Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics

The electric potential plays a key role in the confinement properties of tokamak plasmas, with the subsequent impact on the performances of fusion reactors. Understanding its structure in the peripheral plasma -- interacting with solid materials -- is of crucial importance, since it governs the boundary conditions for the burning core plasma. This paper aims at highlighting the dedicated impact of the plasma-wall boundary layer on this peripheral region. Especially, the physics of plasma-wall interactions leads to non-linear constraints along the magnetic field. In this framework, the existence and uniqueness of the electric potential profile are mathematically investigated. The working model is two-dimensional in space and time evolving.