An Experimental Evaluation of Probabilistic Simulation

Probabilisticmodel checking has emerged as a versatile system verification approach, but is frequently facing state-space explosion problems. One promising attack to this is to construct an abstract model which simulatesthe original model, and to perform model checking on that abstract model. Recently, efficient algorithms for deciding simulation of probabilistic models have been proposed. They reduce the theoretical complexity bounds drastically by exploiting parametric maximum flow algorithms. In this paper, we report on experimental comparisons of these algorithms, together with various interesting optimizations. The evaluation is carried out on both standard PRISM example cases as well as randomly generated models. The results show interesting time-space tradeoffs, with the parametric maximum flow algorithms being superior for large, dense models.

[1]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[2]  Christel Baier,et al.  Simulation for Continuous-Time Markov Chains , 2002, CONCUR.

[3]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.

[4]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[5]  Lijun Zhang,et al.  Deciding Simulations on Probabilistic Automata , 2007, ATVA.

[6]  Moshe Y. Vardi,et al.  Experimental Evaluation of Classical Automata Constructions , 2005, LPAR.

[7]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[8]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[9]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[10]  Andrew V. Goldberg,et al.  On Implementing the Push—Relabel Method for the Maximum Flow Problem , 1997, Algorithmica.

[11]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[12]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[13]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[14]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[15]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[16]  Frits W. Vaandrager,et al.  Cost-optimization of the IPv4 zeroconf protocol , 2003, 2003 International Conference on Dependable Systems and Networks, 2003. Proceedings..

[17]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[18]  Lijun Zhang,et al.  Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations , 2007, Log. Methods Comput. Sci..

[19]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[20]  Christel Baier,et al.  Comparative branching-time semantics for Markov chains , 2005, Inf. Comput..

[21]  Robert K. Brayton,et al.  Verifying Continuous Time Markov Chains , 1996, CAV.

[22]  Joost-Pieter Katoen,et al.  A Markov reward model checker , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[23]  Bernhard Walke,et al.  IEEE 802.11e/802.11k wireless LAN: spectrum awareness for distributed resource sharing , 2004, Wirel. Commun. Mob. Comput..

[24]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[25]  Reza Pulungan,et al.  Does Clock Precision Influence ZigBee's Energy Consumptions? , 2007, OPODIS.