Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions

The Microscopic Imager (MI) on the Mars Exploration Rover Opportunity has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Meridiani Planum landing site. Designed to simulate a geologist's hand lens, the MI is mounted on Opportunity's instrument arm and can resolve objects 0.1 mm across or larger. This paper provides an overview of MI operations, data calibration, and analysis of MI data returned during the first 900 sols (Mars days) of the Opportunity landed mission. Analyses of Opportunity MI data have helped to resolve major questions about the origin of observed textures and features. These studies support eolian sediment transport, rather than impact surge processes, as the dominant depositional mechanism for Burns formation strata. MI stereo observations of a rock outcrop near the rim of Erebus Crater support the previous interpretation of similar sedimentary structures in Eagle Crater as being formed by surficial flow of liquid water. Well-sorted spherules dominate ripple surfaces on the Meridiani plains, and the size of spherules between ripples decreases by about 1 mm from north to south along Opportunity's traverse between Endurance and Erebus craters.

[1]  S. Squyres,et al.  Sulfate-Rich Eolian and Wet Interdune Deposits, Erebus Crater, Meridiani Planum, Mars , 2009 .

[2]  Jeffrey R. Johnson,et al.  Hematite spherules at Meridiani: results from MI, Mini-TES, and Pancam , 2008 .

[3]  James F. Bell,et al.  Mars Exploration Rover Navigation Camera in‐flight calibration , 2008 .

[4]  Jeffrey R. Johnson,et al.  Meteorites on Mars observed with the Mars Exploration Rovers , 2008 .

[5]  Jeffrey R. Johnson,et al.  Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars , 2008 .

[6]  K. Herkenhoff,et al.  Sedimentological Constraints on an Infiltrating Paleowater Table in the Burns Formation, Meridiani Planum, Mars , 2007 .

[7]  Jeffrey R. Johnson,et al.  Soil grain analyses at Meridiani Planum, Mars , 2006 .

[8]  S. Squyres,et al.  Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover , 2006 .

[9]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[10]  A. Knoll,et al.  Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars , 2006 .

[11]  R. E. Arvidson,et al.  Supporting Online Material , 2003 .

[12]  M. Zolensky,et al.  The Meteoritical Bulletin, No. 90, 2006 September , 2006 .

[13]  Jeffrey R. Johnson,et al.  Origin of Rocks and Cobbles on the Meridiani Plains as Seen by Opportunity , 2006 .

[14]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[15]  Charles K. Thompson,et al.  Processing of Mars Exploration Rover Imagery for Science and Operations Planning , 2006 .

[16]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[17]  K. Wohletz,et al.  Impact origin of sediments at the Opportunity landing site on Mars , 2005, Nature.

[18]  B. Hynek,et al.  A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars , 2005, Nature.

[19]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[20]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[21]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[22]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[23]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[24]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[25]  K. Herkenhoff,et al.  Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site , 2005 .

[26]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[27]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[28]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[29]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[30]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[31]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[32]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[33]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[34]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[35]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[36]  Raymond E. Arvidson,et al.  Mars Exploration Rover mission , 2003 .

[37]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[38]  Mark Maimone,et al.  Mars exploration rover engineering cameras , 2001, Remote Sensing.

[39]  J. Grotzinger,et al.  Submarine fan environment inferred from turbidite thickness distributions , 2001 .

[40]  R. J. Reid,et al.  Imager for Mars Pathfinder (IMP) image calibration , 1999 .

[41]  John P. Grotzinger,et al.  Scaling properties of gravity-driven sediments , 1995 .

[42]  J. Southard,et al.  Bed configuration in steady unidirectional water flows; Part 2, Synthesis of flume data , 1990 .

[43]  F. Wlotzka The Meteoritical Bulletin , 1990 .

[44]  Ronald Greeley,et al.  Wind as a geological process: Wind as a geological process , 1985 .

[45]  A. Singer,et al.  Paleolimnology of a late Pleistocene-Holocene crater lake from the Golan Heights, eastern Mediterranean , 1978 .

[46]  R. Sparks,et al.  Grain size variations in ignimbrites and implications for the transport of pyroclastic flows , 1976 .

[47]  P. Choquette,et al.  Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates , 1970 .

[48]  M. C. Powers A New Roundness Scale for Sedimentary Particles , 1953 .