Differentiation and Integration
暂无分享,去创建一个
[1] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[2] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[3] J. Imhof. On the method for numerical integration of Clenshaw and Curtis , 1963 .
[4] Dirk Laurie,et al. Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..
[5] Giovanni Monegato,et al. Stieltjes Polynomials and Related Quadrature Rules , 1982 .
[6] W. Rudin. Principles of mathematical analysis , 1964 .
[7] Richard D. Neidinger,et al. Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming , 2010, SIAM Rev..
[8] Carlos A. Felippa,et al. A compendium of FEM integration formulas for symbolic work , 2004 .
[9] Marcel Vinokur,et al. Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids , 1998 .
[11] Gene H. Golub,et al. Computation of Gauss-Kronrod quadrature rules , 2000, Math. Comput..
[12] G. R. Cowper,et al. Gaussian quadrature formulas for triangles , 1973 .
[13] G. Monegato. A note on extended Gaussian quadrature rules , 1976 .
[14] Kendall E. Atkinson. An introduction to numerical analysis , 1978 .
[15] H. Keller,et al. Analysis of Numerical Methods , 1969 .
[16] Sy M. Blinder. Guide to Essential Math: A Review for Physics, Chemistry and Engineering Students , 2008 .
[17] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[18] Andrew R. Mitchell,et al. Finite Element Analysis and Applications , 1985 .
[19] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[20] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[21] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[22] J. Z. Zhu,et al. The finite element method , 1977 .
[23] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[24] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[25] Robert Piessens,et al. Modified Clenshaw-Curtis Integration and Applications to Numerical Computation of Integral Transforms , 1987 .
[26] Louis B. Rall,et al. Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.
[27] P. Wynn,et al. On a Device for Computing the e m (S n ) Transformation , 1956 .
[28] Dirk P. Laurie,et al. Anti-Gaussian quadrature formulas , 1996, Math. Comput..
[29] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[30] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[31] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[32] John A. Trangenstein. Numerical solution of elliptic and parabolic partial differential equations , 2013 .
[33] P. Keast. Moderate-degree tetrahedral quadrature formulas , 1986 .
[34] G. Szegö,et al. Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören , 1935 .
[35] I. Babuska,et al. Finite Element Analysis , 2021 .
[36] S. Wandzurat,et al. Symmetric quadrature rules on a triangle , 2003 .
[37] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[38] Jin-qian Yu. Symmetric gaussian quadrature formulae for tetrahedronal regions , 1984 .
[39] James N. Lyness,et al. Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .
[40] Anne Greenbaum,et al. NUMERICAL METHODS , 2017 .