Differentiation and Integration

This chapter develops numerical methods for computing derivatives and integrals. Numerical differentiation of polynomials can be performed by synthetic division, or through special properties of trigonometric polynomials or orthogonal polynomials. For derivatives of more general functions, finite differences lead to difficulties with rounding errors that can be largely overcome by clever post-processing, such as Richardson extrapolation. Integration is a more complicated topic. The Lebesgue integral is related to Monte Carlo methods, and Riemann sums are improved by trapezoidal and midpoint rules. Analysis of the errors leads to the Euler-MacLaurin formula. Various polynomial interpolation techniques lead to specialized numerical integration methods. The chapter ends with discussions of tricks for difficult integrals, adaptive quadrature, and integration in multiple dimensions.

[1]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[2]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[3]  J. Imhof On the method for numerical integration of Clenshaw and Curtis , 1963 .

[4]  Dirk Laurie,et al.  Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..

[5]  Giovanni Monegato,et al.  Stieltjes Polynomials and Related Quadrature Rules , 1982 .

[6]  W. Rudin Principles of mathematical analysis , 1964 .

[7]  Richard D. Neidinger,et al.  Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming , 2010, SIAM Rev..

[8]  Carlos A. Felippa,et al.  A compendium of FEM integration formulas for symbolic work , 2004 .

[9]  Marcel Vinokur,et al.  Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids , 1998 .

[11]  Gene H. Golub,et al.  Computation of Gauss-Kronrod quadrature rules , 2000, Math. Comput..

[12]  G. R. Cowper,et al.  Gaussian quadrature formulas for triangles , 1973 .

[13]  G. Monegato A note on extended Gaussian quadrature rules , 1976 .

[14]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[15]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[16]  Sy M. Blinder Guide to Essential Math: A Review for Physics, Chemistry and Engineering Students , 2008 .

[17]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[18]  Andrew R. Mitchell,et al.  Finite Element Analysis and Applications , 1985 .

[19]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[20]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[21]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[22]  J. Z. Zhu,et al.  The finite element method , 1977 .

[23]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[24]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[25]  Robert Piessens,et al.  Modified Clenshaw-Curtis Integration and Applications to Numerical Computation of Integral Transforms , 1987 .

[26]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[27]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[28]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..

[29]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[30]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[31]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[32]  John A. Trangenstein Numerical solution of elliptic and parabolic partial differential equations , 2013 .

[33]  P. Keast Moderate-degree tetrahedral quadrature formulas , 1986 .

[34]  G. Szegö,et al.  Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören , 1935 .

[35]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[36]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[37]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[38]  Jin-qian Yu Symmetric gaussian quadrature formulae for tetrahedronal regions , 1984 .

[39]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[40]  Anne Greenbaum,et al.  NUMERICAL METHODS , 2017 .