Explicit Diversity Index (EDI): A Novel Measure for Assessing the Diversity of Compound Databases

A novel diversity assessment method, the Explicit Diversity Index (EDI), is introduced for druglike molecules. EDI combines structural and synthesis-related dissimilarity values and expresses them as a single number. As an easily interpretable measure, it facilitates the decision making in the design of combinatorial libraries, and it might assist in the comparison of compound sets provided by different manufacturers. Because of its rapid calculation algorithm, EDI enables the diversity assessment of in-house or commercial compound collections.

[1]  Peter Willett,et al.  Maximum common subgraph isomorphism algorithms for the matching of chemical structures , 2002, J. Comput. Aided Mol. Des..

[2]  Chris L. Waller,et al.  Rational Combinatorial Library Design. 3. Simulated Annealing Guided Evaluation (SAGE) of Molecular Diversity: A Novel Computational Tool for Universal Library Design and Database Mining , 1999, J. Chem. Inf. Comput. Sci..

[3]  Philip M. Dean,et al.  Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design , 1997, J. Comput. Aided Mol. Des..

[4]  J. Hogan Directed combinatorial chemistry. , 1996, Nature.

[5]  Wolfgang H. B. Sauer,et al.  Molecular Shape Diversity of Combinatorial Libraries: A Prerequisite for Broad Bioactivity , 2003, J. Chem. Inf. Comput. Sci..

[6]  Robert D. Clark,et al.  OptiSim: An Extended Dissimilarity Selection Method for Finding Diverse Representative Subsets , 1997, J. Chem. Inf. Comput. Sci..

[7]  Dimitris K. Agrafiotis,et al.  An Efficient Implementation of Distance-Based Diversity Measures Based on k-d Trees , 1999, J. Chem. Inf. Comput. Sci..

[8]  David J. Cummins,et al.  Molecular Diversity in Chemical Databases: Comparison of Medicinal Chemistry Knowledge Bases and Databases of Commercially Available Compounds , 1996, J. Chem. Inf. Comput. Sci..

[9]  Jan T. Pedersen,et al.  Structural Diversity of Small Molecule Libraries , 2001, J. Chem. Inf. Comput. Sci..

[10]  Y C Martin Molecular diversity: how we measure it? Has it lived up to its promise? , 2001, Farmaco.

[12]  Ramaswamy Nilakantan,et al.  Database diversity assessment: New ideas, concepts, and tools , 1997, J. Comput. Aided Mol. Des..

[13]  Ramaswamy Nilakantan,et al.  A novel approach to combinatorial library design. , 2002, Combinatorial chemistry & high throughput screening.

[14]  Mark A. Murcko,et al.  Virtual screening : an overview , 1998 .

[15]  John Bradshaw,et al.  The Effectiveness of Reactant Pools for Generating Structurally-Diverse Combinatorial Libraries , 1997, J. Chem. Inf. Comput. Sci..

[16]  Peter Willett,et al.  Rapid Quantification of Molecular Diversity for Selective Database Acquisition , 1997, J. Chem. Inf. Comput. Sci..

[17]  P. Willett,et al.  A Fast Algorithm For Selecting Sets Of Dissimilar Molecules From Large Chemical Databases , 1995 .

[18]  Dimitris K. Agrafiotis,et al.  Stochastic Similarity Selections from Large Combinatorial Libraries. , 2000 .

[19]  Robert D. Clark,et al.  OptDesign: Extending Optimizable k-Dissimilarity Selection to Combinatorial Library Design , 2003, J. Chem. Inf. Comput. Sci..

[20]  Mary P. Bradley An overview of the diversity represented in commercially-available databases , 2002, J. Comput. Aided Mol. Des..

[21]  M Waldman,et al.  Novel algorithms for the optimization of molecular diversity of combinatorial libraries. , 2000, Journal of molecular graphics & modelling.

[22]  Harald Mauser,et al.  Database Clustering with a Combination of Fingerprint and Maximum Common Substructure Methods. , 2005 .

[23]  Lewi Pj,et al.  Spectral mapping, a technique for classifying biological activity profiles of chemical compounds. , 1976 .

[24]  Guy H. Grant,et al.  Similarity Calculations Using Two-Dimensional Molecular Representations , 2001, J. Chem. Inf. Comput. Sci..

[25]  Petra Schneider,et al.  De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks , 2000, J. Comput. Aided Mol. Des..

[26]  Stuart L Schreiber,et al.  A planning strategy for diversity-oriented synthesis. , 2004, Angewandte Chemie.

[27]  Brian D. Hudson,et al.  Parameter Based Methods for Compound Selection from Chemical Databases , 1996 .

[28]  Y. Martin,et al.  Do structurally similar molecules have similar biological activity? , 2002, Journal of medicinal chemistry.

[29]  Alexander Tropsha,et al.  Diversity and Coverage of Structural Sublibraries Selected Using the SAGE and SCA Algorithms , 2001, J. Chem. Inf. Comput. Sci..

[30]  Sergei V. Trepalin,et al.  New Diversity Calculations Algorithms Used for Compound Selection , 2002, J. Chem. Inf. Comput. Sci..

[31]  Dimitris K. Agrafiotis,et al.  The Measurement of Molecular Diversity , 2000 .

[32]  Dimitris K. Agrafiotis On the Use of Information Theory for Assessing Molecular Diversity , 1997, J. Chem. Inf. Comput. Sci..

[33]  Roger E. Critchlow,et al.  Beyond mere diversity: tailoring combinatorial libraries for drug discovery. , 1999, Journal of combinatorial chemistry.

[34]  S. L. Dixon,et al.  LASSOO: a generalized directed diversity approach to the design and enrichment of chemical libraries. , 1999, Journal of medicinal chemistry.

[35]  Johannes H. Voigt,et al.  Comparison of the NCI Open Database with Seven Large Chemical Structural Databases , 2001, J. Chem. Inf. Comput. Sci..

[36]  Robert D Clark,et al.  Neighborhood behavior: a useful concept for validation of "molecular diversity" descriptors. , 1996, Journal of medicinal chemistry.