Forbidding Just One Intersection

Abstract Following a conjecture of P. Erdos, we show that if F is a family of k-subsets of and n-set no two of which intersect in exactly l elements then for k ⩾ 2l + 2 and n sufficiently large | F | ⩽ (k − l − 1n − l − 1) with equality holding if and only if F consists of all the k-sets containing a fixed (l + 1)-set. In general we show | F | ⩽ dknmax;{;l,k − l − 1};, where dk is a constant depending only on k. These results are special cases of more general theorems (Theorem 2.1–2.3).

[1]  Peter Frankl On families of finite sets no two of which intersect in a singleton , 1977, Bulletin of the Australian Mathematical Society.

[2]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[3]  P Frankl,et al.  On Hypergraphs without Two Edges Intersecting in a Given Number of Vertices , 1984, J. Comb. Theory, Ser. A.

[4]  L. Lovász Combinatorial problems and exercises , 1979 .

[5]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[6]  Peter Frankl,et al.  An extremal set theoretical characterization of some steiner systems , 1983, Comb..

[7]  Peter Frankl Extremal Problems and Coverings of the Space , 1980, Eur. J. Comb..

[8]  Gyula O. H. Katona,et al.  If the intersection of any r sets has a size ̸= r − 1 , 1979 .

[9]  Peter Frankl,et al.  A new short proof for the Kruskal-Katona theorem , 1984, Discret. Math..

[10]  Peter Frankl,et al.  Linear Dependencies among Subsets of a Finite Set , 1983, Eur. J. Comb..

[11]  Paul Erdös,et al.  On the combinatorial problems which I would most like to see solved , 1981, Comb..

[12]  Zoltán Füredi,et al.  On finite set-systems whose every intersection is a Kernel of a star , 1983, Discret. Math..

[13]  Gyula O. H. Katona,et al.  Intersection theorems for systems of finite sets , 1964 .

[14]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[15]  Paul Erdös,et al.  INTERSECTION PROPERTIES OF SYSTEMS OF FINITE SETS , 1978 .

[16]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[17]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[18]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..