A psychophysical approach to assessing the quality of antialiased images

The assumption that antialiasing destroys useful visual information about object features is challenged in three experiments that examine the effects of antialiasing on the visual information for object location and motion. The results show that proper antialiasing eliminates the spurious visual information produced by sampling processes in image synthesis and allows the viewer's visual system to produce a precise representation of object location and a continuous representation of object motion. This suggests that in designing imagery systems, simply increasing the spatial and temporal addressability and resolution beyond limits set by the human visual system will have a negligible impact on image quality, but that effective use of antialiasing techniques could allow visual information about object features to be presented with great fidelity.<<ETX>>

[1]  D. Marr,et al.  An Information Processing Approach to Understanding the Visual Cortex , 1980 .

[2]  G Westheimer,et al.  Spatial frequency and light-spread descriptions of visual acuity and hyperacuity. , 1977, Journal of the Optical Society of America.

[3]  R. J. Watt,et al.  Mechanisms responsible for the assessment of visual location: Theory and evidence , 1983, Vision Research.

[4]  S. McKee,et al.  Spatial configurations for visual hyperacuity , 1977, Vision Research.

[5]  D. Burr Motion smear , 1980, Nature.

[6]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[7]  S. McKee,et al.  Visual acuity in the presence of retinal-image motion. , 1975, Journal of the Optical Society of America.

[8]  W. H. Miller,et al.  Photoreceptor diameter and spacing for highest resolving power. , 1977, Journal of the Optical Society of America.

[9]  T. Cornsweet,et al.  The staircrase-method in psychophysics. , 1962, The American journal of psychology.

[10]  K. Booth,et al.  On the Parameters of Human Visual Performance: An Investigation of the Benefits of Antialiasing , 1987, IEEE Computer Graphics and Applications.

[11]  Qi Tian,et al.  Algorithms for subpixel registration , 1986 .

[12]  H. B. Barlow,et al.  Reconstructing the visual image in space and time , 1979, Nature.

[13]  D. Marr,et al.  Smallest channel in early human vision. , 1980, Journal of the Optical Society of America.

[14]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[15]  D. E. Pearson,et al.  Transmission and display of pictorial information , 1975 .

[16]  William Leler,et al.  Human vision, anti-aliasing, and the cheap 4000 line display , 1980, SIGGRAPH '80.

[17]  G Stigmar,et al.  BLURRED VISUAL STIMULI , 1971 .

[18]  Franklin C. Crow The use of grayscale for improved raster display of vectors and characters , 1978, SIGGRAPH '78.

[19]  Eric Krotkov Visual hyperacuity: Representation and computation of high precision position information , 1986, Comput. Vis. Graph. Image Process..

[20]  James T. Kajiya,et al.  Filtering high quality text for display on raster scan devices , 1981, SIGGRAPH '81.

[21]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[22]  Andrew B. Watson,et al.  Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays , 1986 .

[23]  G. Sperling Movement perception in computer-driven visual displays , 1976 .