Shape ultimate attribute opening

The ultimate opening (UO) is a powerful segmentation operator recently introduced by Beucher [1]. It automatically selects the most contrasted regions of an image. However, in the presence of nested structures (e.g. text in a signboard or windows in a contrasted facade), interesting structures may be masked by the containing region. In this paper we focus on ultimate attribute openings and we propose a method that improves the results by favoring regions with a predefined shape via a similarity function. An efficient implementation using a max-tree representation of the image is proposed. The method is validated in the framework of three applications: facade analysis, scene-text detection and cell segmentation. Experimental results show that the proposed method yields better segmentation results than UO.

[1]  James M. Keller,et al.  Snakes on the Watershed , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Michael H. F. Wilkinson,et al.  A Comparison of Algorithms for Connected Set Openings and Closings , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  T. Retornaz Détection de textes enfouis dans des bases d’images généralistes : un descripteur sémantique pour l’indexation , 2007 .

[4]  Helmut Mayer,et al.  BUILDING FACADE INTERPRETATION FROM IMAGE SEQUENCES , 2005 .

[5]  Beatriz Marcotegui,et al.  Fast Implementation of the Ultimate Opening , 2009, ISMM.

[6]  E. R. Urbach,et al.  Shape-only granulometries and gray-scale shape filters , 2002 .

[7]  Luc Vincent,et al.  Morphological Area Openings and Closings for Grey-scale Images , 1994 .

[8]  Serge Beucher,et al.  Numerical residues , 2007, Image Vis. Comput..

[9]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[10]  Olivier D. Faugeras,et al.  Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics , 2005, Found. Comput. Math..

[11]  Wolfgang Förstner,et al.  eTRIMS Image Database for Interpreting Images of Man-Made Scenes , 2009 .

[12]  Remco C. Veltkamp,et al.  Shape Similarity Measures, Properties and Constructions , 2000, VISUAL.

[13]  Xiaobo Zhou,et al.  Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens , 2008, BMC Bioinformatics.

[14]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Fernand Meyer,et al.  An Overview of Morphological Segmentation , 2001, Int. J. Pattern Recognit. Artif. Intell..

[16]  Allan Hanbury,et al.  Mathematical Morphology in the HLS Colour Space , 2001, BMVC.

[17]  G. Matheron Random Sets and Integral Geometry , 1976 .

[18]  Philippe Salembier,et al.  Antiextensive connected operators for image and sequence processing , 1998, IEEE Trans. Image Process..

[19]  Souhaïl Outal,et al.  Quantification par analyse d'images de la granulométrie des roches fragmentées : amélioration de l'extraction morphologique des surfaces, amélioration de la reconstruction stéréologique , 2006 .

[20]  Michael H. F. Wilkinson,et al.  Shape Preserving Filament Enhancement Filtering , 2001, MICCAI.

[21]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[22]  FRANK Y. SHIH,et al.  Morphological shape description using geometric spectrum on multidimensional binary images , 1992, Pattern Recognit..

[23]  Alexander Toet,et al.  Shape in Picture , 1994, NATO ASI Series.

[24]  Michael H. F. Wilkinson,et al.  Vector-Attribute Filters , 2005, ISMM.

[25]  Ronald Jones,et al.  Attribute Openings, Thinnings, and Granulometries , 1996, Comput. Vis. Image Underst..

[26]  Luc Van Gool,et al.  Image-based procedural modeling of facades , 2007, SIGGRAPH 2007.

[27]  Michael S. Lew,et al.  Principles of Visual Information Retrieval , 2001, Advances in Pattern Recognition.

[28]  Dan Schonfeld,et al.  Robust morphological representation of binary images , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[29]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[30]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[31]  Ghassan Hamarneh,et al.  Watershed segmentation using prior shape and appearance knowledge , 2009, Image Vis. Comput..

[32]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[33]  Michael H. F. Wilkinson,et al.  Fast Morphological Attribute Operations Using Tarjan's Union-Find Algorithm , 2000, ISMM.

[34]  Edward R. Dougherty,et al.  Digital Image Processing Methods , 1994 .

[35]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[36]  Beatriz Marcotegui,et al.  Ultimate Attribute Opening Segmentation with Shape Information , 2009, ISMM.

[37]  Marcel Worring,et al.  Watersnakes: Energy-Driven Watershed Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Michael H. F. Wilkinson,et al.  Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.