Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping

We investigated different CVD-synthesized MoS2 films, aiming to correlate the device characteristics with the grain size. The grain size of MoS2 can be precisely characterized through nondestructive second harmonic generation mapping based on the degree of inversion symmetry. The devices with larger grains at the channel region show improved on/off current ratio, which can be explained by the less carrier scattering caused by the grain boundaries.

[1]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[2]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[3]  Yun Hee Jang,et al.  Layer-controlled CVD growth of large-area two-dimensional MoS2 films. , 2015, Nanoscale.

[4]  Harish Bhaskaran,et al.  Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition , 2014 .

[5]  M. Terrones,et al.  Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. , 2014, ACS nano.

[6]  P. Ajayan,et al.  Electrical transport properties of polycrystalline monolayer molybdenum disulfide. , 2014, ACS nano.

[7]  Jing Zhang,et al.  Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain sizes. , 2014, ACS nano.

[8]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[9]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[10]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[11]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[12]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[13]  Lain‐Jong Li,et al.  Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition , 2013 .

[14]  Gerhard Tröster,et al.  Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. , 2013, ACS nano.

[15]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[16]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[17]  Junqiao Wu,et al.  Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing , 2013 .

[18]  P. Ajayan,et al.  Second harmonic microscopy of monolayer MoS 2 , 2013, 1302.3935.

[19]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[20]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[21]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[22]  J. Kong,et al.  Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition , 2012, 2012 International Electron Devices Meeting.

[23]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[24]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[25]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[26]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[27]  Luis A. Agapito,et al.  Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors , 2011, Nanotechnology.

[28]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[29]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[30]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[31]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[32]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[33]  M. I. Katsnelson,et al.  Chaotic Dirac Billiard in Graphene Quantum Dots , 2007, Science.

[34]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical review letters.

[35]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[36]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[37]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[39]  Norbert Kruse,et al.  Single-layer MoS2 on mica: studies by means of scanning force microscopy , 1993 .

[40]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[41]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[42]  R. Frindt,et al.  Single Crystals of MoS2 Several Molecular Layers Thick , 1966 .

[43]  Vincent Meunier,et al.  First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.