Importance of d–p Coulomb interaction for high T C cuprates and other oxides

Current theoretical studies of electronic correlations in transition metal oxides typically only account for the local repulsion between d-electrons even if oxygen ligand p-states are an explicit part of the effective Hamiltonian. Interatomic interactions such as between d- and (ligand) p-electrons, as well as the local interaction between p-electrons, are neglected. Often, the relative d?p orbital splitting has to be adjusted ?ad hoc? on the basis of the experimental evidence. By applying the merger of local density approximation and dynamical mean field theory to the prototypical case of the three-band Emery dp model for the cuprates, we demonstrate that, without any ?ad hoc? adjustment of the orbital splitting, the charge transfer insulating state is stabilized by the interatomic interaction . Our study hence shows how to improve realistic material calculations that explicitly include the p-orbitals.

[1]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[2]  K. Held,et al.  Dynamical vertex approximation : A step beyond dynamical mean-field theory , 2006, cond-mat/0603100.

[3]  E. Müller-Hartmann Fermions on a Lattice in High Dimensions , 1989 .

[4]  T. Maier,et al.  Multi-scale extensions to quantum cluster methods for strongly correlated electron systems , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Correlation effects on the electronic structure of TiOCl: A NMTO+DMFT study , 2004, cond-mat/0411631.

[6]  S. Khalil,et al.  Like-sign dimuon charge asymmetry in the Randall-Sundrum model , 2010, 1011.5979.

[7]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[8]  d-wave superconductivity in the hubbard model , 2000, Physical review letters.

[9]  A. Millis,et al.  Optical conductivity and the correlation strength of high-temperature copper-oxide superconductors , 2007, 0712.2392.

[10]  Zhang,et al.  Effective Hamiltonian for the superconducting Cu oxides. , 1988, Physical review. B, Condensed matter.

[11]  K. Held,et al.  Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. , 2008, Physical review letters.

[12]  T. Pruschke,et al.  Thermodynamics of the 3D Hubbard model on approaching the Néel transition. , 2010, Physical review letters.

[13]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[14]  K. Held,et al.  Critical properties of the half-filled Hubbard model in three dimensions. , 2011, Physical review letters.

[15]  Emanuel Gull,et al.  Momentum-space anisotropy and pseudogaps: A comparative cluster dynamical mean-field analysis of the doping-driven metal-insulator transition in the two-dimensional Hubbard model , 2010, 1007.2592.

[16]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[17]  A. I. Lichtenstein,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[18]  K. Held,et al.  High-temperature optical spectral weight and fermi-liquid renormalization in bi-based cuprate superconductors. , 2010, Physical review letters.

[19]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[20]  M I Katsnelson,et al.  Efficient perturbation theory for quantum lattice models. , 2008, Physical review letters.

[21]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000 .

[22]  K. Held,et al.  Comparing pertinent effects of antiferromagnetic fluctuations in the two- and three-dimensional Hubbard model , 2008, 0808.0689.

[23]  M. Gutzwiller Effect of Correlation on the Ferromagnetism of Transition Metals , 1963 .

[24]  Emanuel Gull,et al.  Submatrix updates for the continuous-time auxiliary-field algorithm , 2010, 1010.3690.

[25]  A. Rakhmanov,et al.  Dynamical magnetic structures in superconductors and ferromagnets , 2012 .

[26]  A. Millis,et al.  Low-energy models for correlated materials: bandwidth renormalization from Coulombic screening. , 2012, Physical review letters.

[27]  A. I. Lichtenstein,et al.  Continuous-time quantum Monte Carlo method for fermions: Beyond auxiliary field framework , 2004 .

[28]  K. Held,et al.  Electronic structure of nickelates: From two-dimensional heterostructures to three-dimensional bulk materials , 2010, 1111.1111.

[29]  Karsten Held,et al.  Conserved quantities of S U ( 2 ) -invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations , 2012, 1209.0915.

[30]  D. Vollhardt,et al.  Correlated Lattice Fermions in High Dimensions , 1989 .

[31]  V. I. Anisimov,et al.  One-particle irreducible functional approach - a new route to diagrammatic extensions of DMFT , 2013, 1301.7546.

[32]  A. I. Lichtenstein,et al.  Antiferromagnetism and d -wave superconductivity in cuprates: A cluster dynamical mean-field theory , 1999, cond-mat/9911320.

[33]  Xin Wang,et al.  Dynamical mean-field theory of nickelate superlattices. , 2011, Physical review letters.

[34]  G. Kotliar,et al.  Strength of correlations in electron- and hole-doped cuprates , 2010, 1005.3095.

[35]  K. Held,et al.  Dynamical Vertex Approximation , 2008, 0807.1860.

[36]  A. Georges,et al.  Orbital-selective Mott transition in multiband systems : Slave-spin representation and dynamical mean-field theory , 2005, cond-mat/0503764.

[37]  O. K. Andersen,et al.  Band-structure trend in hole-doped cuprates and correlation with T(c max). , 2000, Physical review letters.

[38]  Andrew J. Millis,et al.  Covalency, double-counting, and the metal-insulator phase diagram in transition metal oxides , 2011, 1110.2782.

[39]  M. Capone,et al.  Optical sum rule anomalies in the cuprates: Interplay between strong correlation and electronic band structure , 2007, 0708.3475.

[40]  G. Kotliar,et al.  Optical weights and waterfalls in doped charge-transfer insulators: A local density approximation and dynamical mean-field theory study of La2−xSrxCuO4 , 2008 .

[41]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[42]  G. Kotliar,et al.  Cluster dynamical mean field theory of the Mott transition. , 2008, Physical review letters.

[43]  Superconductivity-Induced Transfer of In-Plane Spectral Weight in Bi2Sr2CaCu2O8+δ , 2002, Science.

[44]  A. I. Lichtenstein,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004 .

[45]  E. Müller-Hartmann,et al.  Correlated fermions on a lattice in high dimensions , 1989 .

[46]  J. Kanamori,et al.  Electron Correlation and Ferromagnetism of Transition Metals , 1963 .

[47]  Xin Wang,et al.  Antiferromagnetism and the gap of a Mott insulator: Results from analytic continuation of the self-energy , 2009, 0904.1982.

[48]  P. Calvani,et al.  Frequency-dependent thermal response of the charge system and the restricted sum rules of La2-xSrxCuO4. , 2004, Physical review letters.

[49]  O. Jepsen,et al.  LDA energy bands, low-energy hamiltonians, t′, t″, t⊥ (k), and J⊥ , 1995 .

[50]  E. Müller-Hartmann The Hubbard model at high dimensions: some exact results and weak coupling theory , 1989 .

[51]  H. R. Krishnamurthy,et al.  Nonlocal Dynamical Correlations of Strongly Interacting Electron Systems , 1998 .

[52]  A. Millis,et al.  A Dynamical Mean Field Study of the Three-Band Copper-Oxide Model , 2008, 0804.2250.

[53]  Antoine Georges,et al.  Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. , 2004, Physical review letters.

[54]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[55]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[56]  Yusuke Nomura,et al.  Effective on-site interaction for dynamical mean-field theory , 2012, 1205.2836.

[57]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[58]  T. Pruschke,et al.  Quantum cluster theories , 2004, cond-mat/0404055.

[59]  S. Savrasov,et al.  Calculated momentum dependence of Zhang-Rice states in transition metal oxides. , 2007, Physical review letters.

[60]  A. I. Lichtenstein,et al.  Dual fermion approach to nonlocal correlations in the Hubbard model , 2006, cond-mat/0612196.

[61]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[62]  K. Held,et al.  Effective crystal field and Fermi surface topology: a comparison of d- and dp-orbital models , 2013, 1303.2099.

[63]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[64]  K. Held,et al.  Mott–Hubbard transition in V2O3 revisited , 2013, 1303.2050.

[65]  N. Blumer,et al.  Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model , 2012, 1205.6788.

[66]  A. I. Lichtenstein,et al.  Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V 2 O 3 , 2007 .

[67]  A. Millis,et al.  Theory of oxygenKedge x-ray absorption spectra of cuprates , 2010, 1001.4791.

[68]  P. Kent,et al.  Combined density functional and dynamical cluster quantum Monte Carlo calculations of the three-band Hubbard model for hole-doped cuprate superconductors , 2008, 0806.3770.

[69]  G. Kotliar,et al.  Cellular Dynamical Mean Field Approach to Strongly Correlated Systems , 2000, cond-mat/0010328.