Stirling Permutations, Cycle Structure of Permutations and Perfect Matchings

In this paper we provide constructive proofs that the following three statistics are equidistributed: the number of ascent plateaus of Stirling permutations of order $n$, a weighted variant of the number of excedances in permutations of length $n$ and the number of blocks with even maximal elements in perfect matchings of the set $\{1,2,3,\ldots,2n\}$.

[1]  Francesco Brenti,et al.  A Class of q-Symmetric Functions Arising from Plethysm , 2000, J. Comb. Theory, Ser. A.

[2]  T. Kyle Petersen,et al.  Affine descents and the Steinberg torus , 2007, Adv. Appl. Math..

[3]  Ira M. Gessel,et al.  Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.

[4]  James Haglund,et al.  Stable multivariate Eulerian polynomials and generalized Stirling permutations , 2012, Eur. J. Comb..

[5]  J. Remmel,et al.  Block patterns in Stirling permutations , 2014, 1402.3358.

[6]  Francesco Brenti,et al.  q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..

[7]  Ira M. Gessel,et al.  Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.

[8]  Carla D. Savage,et al.  Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences , 2012, J. Comb. Theory, Ser. A.

[9]  Carla D. Savage,et al.  The (1/k)-Eulerian Polynomials , 2012, Electron. J. Comb..

[10]  Shi-Mei Ma,et al.  Some combinatorial arrays generated by context-free grammars , 2013, Eur. J. Comb..

[11]  Toufik Mansour,et al.  The 1/k-Eulerian polynomials and k-Stirling permutations , 2014, Discret. Math..

[12]  Svante Janson,et al.  Generalized Stirling permutations, families of increasing trees and urn models , 2008, J. Comb. Theory, Ser. A.

[13]  Shi-Mei Ma,et al.  A Family of Two-Variable Derivative Polynomials for Tangent and Secant , 2012, Electron. J. Comb..

[14]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[15]  Miklós Bóna,et al.  Real Zeros and Normal Distribution for Statistics on Stirling Permutations Defined by Gessel and Stanley , 2007, SIAM J. Discret. Math..