On the evaluation of one-dimensional Cauchy principal value integrals by rules based on cubic spline interpolation

AbstractIn this note we consider the numerical evaluation of one dimensional Cauchy principal value integrals of the form $$\rlap{--} \smallint _a^b \frac{{k(x)f(x)}}{{x - \lambda }}dx, a< \lambda< b,$$ by rules obtained by “subtracting out” the singularity and then applying product quadratures based on cubic spline interpolation at equally spaced nodes. Convergence results are established for Hölder continuous functions of order, μ, 0<μ≤1, and asymptotic rates are obtained for functionsf≠Ck[a, b],k=1, 2, 3 or 4. Some comparisons with other methods and numerical examples are also given.ZusammenfassungIn dieser Arbeit betrachten wir die numerische Bestimmung von eindimensionalen Integralen vom Cauchyschen Hauptwert vom Typ $$\rlap{--} \smallint _a^b \frac{{k(x)f(x)}}{{x - \lambda }}dx, a< \lambda< b,$$ mittels Regeln, die gewonnen wurden durch “Subtraktion” der Singularität und nachfolgender Applikation von Produkt-Quadraturen auf der Basis kubischer Spline-Interpolation auf äquidistanten Knoten. Übereinstimmende Resultate werden durch Hölder-kontinuierliche Funktionen der Ordnung μ, 0<μ≤1, erstellt, und asymptotische Konvergenzraten erhält man für Funktionenf≠Ck[a,b],k=1, 2, 3 oder 4. Vergleiche mit anderen Methoden und numerische Beispiele sind ebenfalls angegeben.

[1]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[2]  David Elliott,et al.  Gauss type quadrature rules for Cauchy principal value integrals , 1979 .

[3]  Giovanni Monegato,et al.  The numerical evaluation of one-dimensional Cauchy principal value integrals , 1982, Computing.

[4]  Catterina Dagnino,et al.  Product integration of piecewise continuous integrands based on cubic splineinterpolation at equally spaced nodes , 1988 .

[5]  T. N. E. Greville,et al.  Theory and applications of spline functions , 1969 .

[6]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[7]  S. Welstead,et al.  ORTHOGONAL POLYNOMIALS APPLIED TO THE SOLUTION OF SINGULAR INTEGRAL EQUATIONS , 1982 .

[8]  Avram Sidi,et al.  Convergence of product integration rules for functions with interior and end point singularities over bounded and unbounded intervals , 1986 .

[9]  Ayse Alaylioglu,et al.  Product integration of logarithmic singular integrands based on cubic splines , 1984 .

[10]  Nikolaos I. Ioakimidis,et al.  On the numerical evaluation of derivatives of Cauchy principal value integrals , 1981, Computing.

[11]  Philip Rabinowitz,et al.  Convergence results for piecewise linear quadratures for Cauchy principal value integrals , 1988 .

[12]  Doron S. Lubinsky,et al.  Rates of convergence of Gaussian quadrature for singular integrands , 1984 .

[13]  David Elliott,et al.  On the convergence of Hunter's quadrature rule for Cauchy principal value integrals , 1979 .

[14]  Philip Rabinowitz,et al.  Numerical integration in the presence of an interior singularity , 1987 .

[15]  Erica Jen,et al.  Cubic splines and approximate solution of singular integral equations , 1981 .

[16]  Carl de Boor,et al.  Convergence of Cubic Spline Interpolation with the Not-A-Knot Condition. , 1985 .

[17]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[18]  J. Domsta Interpolating spline bases , 1976 .

[19]  Catterina Dagnino,et al.  Product integration of singular integrands based on cubic spline interpolation at equally spaced nodes , 1990 .

[20]  R. Beatson,et al.  On the convergence of some cubic spline interpolation schemes , 1986 .

[21]  A. Erdelyi,et al.  Fonctions Spheriques de Legendre et Fonctions Spheroidales. , 1959 .

[22]  B. Noble,et al.  Error Estimates for Three Methods of Evaluating Cauchy Principal Value Integrals , 1980 .

[23]  Apostolos Gerasoulis,et al.  Piecewise-polynomial quadratures for Cauchy singular integrals , 1986 .

[24]  David Elliott,et al.  An algorithm for the numerical evaluation of certain Cauchy principal value integrals , 1972 .

[25]  David Elliott Orthogonal Polynomials Associated with Singular Integral Equations Having a Cauchy Kernel , 1982 .

[26]  Ian H. Sloan,et al.  Product Integration in the Presence of a Singularity , 1984 .