Efficient Unsupervised Temporal Segmentation of Motion Data

We introduce a method for automated temporal segmentation of human motion data into distinct actions and compositing motion primitives based on self-similar structures in the motion sequence. We use neighborhood graphs for the partitioning and the similarity information in the graph is further exploited to cluster the motion primitives into larger entities of semantic significance. The method requires no assumptions about the motion sequences at hand and no user interaction is required for the segmentation or clustering. In addition, we introduce a feature bundling preprocessing technique to make the segmentation more robust to noise, as well as a notion of motion symmetry for more refined primitive detection. We test our method on several sensor modalities, including markered and markerless motion capture as well as on electromyograph and accelerometer recordings. The results highlight our system's capabilities for both segmentation and for analysis of the finer structures of motion data, all in a completely unsupervised manner.

[1]  Luc Van Gool,et al.  Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities , 2011, NIPS.

[2]  Zaïd Harchaoui,et al.  Kernel Change-point Analysis , 2008, NIPS.

[3]  Guodong Liu,et al.  Segment-based human motion compression , 2006, SCA '06.

[4]  Jessica K. Hodgins,et al.  Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Lihi Zelnik-Manor,et al.  Statistical analysis of dynamic actions , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Yong Rui,et al.  Segmenting visual actions based on spatio-temporal motion patterns , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[8]  Reinhard Klein,et al.  Interactive steering of mesh animations , 2012, SCA '12.

[9]  Jinxiang Chai,et al.  Motion graphs++ , 2012, ACM Trans. Graph..

[10]  Kevin P. Murphy,et al.  Modeling changing dependency structure in multivariate time series , 2007, ICML '07.

[11]  Yiannis Aloimonos,et al.  A Language for Human Action , 2007, Computer.

[12]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[13]  Reinhard Klein,et al.  Efficient unsupervised temporal segmentation of human motion , 2014, SCA '14.

[14]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[15]  Daniel S. Margulies,et al.  Three-Dimensional Mean-Shift Edge Bundling for the Visualization of Functional Connectivity in the Brain , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  Ralf Sarlette,et al.  Simple and efficient compression of animation sequences , 2005, SCA '05.

[17]  Danica Kragic,et al.  Cohomological learning of periodic motion , 2015, Applicable Algebra in Engineering, Communication and Computing.

[18]  Hong-Yuan Mark Liao,et al.  Example-Based Human Motion Extrapolation and Motion Repairing Using Contour Manifold , 2014, IEEE Transactions on Multimedia.

[19]  Philippe Beaudoin,et al.  Motion-motif graphs , 2008, SCA '08.

[20]  Mohamed S. Kamel,et al.  Semi-supervised Kernel-Based Temporal Clustering , 2014, 2014 13th International Conference on Machine Learning and Applications.

[21]  MedioniGerard,et al.  Structured Time Series Analysis for Human Action Segmentation and Recognition , 2014 .

[22]  Meinard Müller,et al.  Multi-Mode Tensor Representation of Motion Data , 2008, J. Virtual Real. Broadcast..

[23]  Frans Wiering,et al.  Robust Segmentation and Annotation of Folk Song Recordings , 2009, ISMIR.

[24]  B. Prabhakaran,et al.  Segmentation and recognition of motion streams by similarity search , 2007, TOMCCAP.

[25]  Meinard Müller,et al.  Efficient content-based retrieval of motion capture data , 2005, SIGGRAPH '05.

[26]  Jessica K. Hodgins,et al.  Aligned Cluster Analysis for temporal segmentation of human motion , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[27]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[28]  Pietro Perona,et al.  Decomposition of human motion into dynamics-based primitives with application to drawing tasks , 2003, Autom..

[29]  Lucas Kovar,et al.  Automated extraction and parameterization of motions in large data sets , 2004, ACM Trans. Graph..

[30]  Yun Fu,et al.  Temporal Subspace Clustering for Human Motion Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[31]  Meinard Müller,et al.  Frame-Level Audio Segmentation for Abridged Musical Works , 2014, ISMIR.

[32]  Fernando De la Torre,et al.  Joint segmentation and classification of human actions in video , 2011, CVPR 2011.

[33]  Hans-Peter Seidel,et al.  Efficient and Robust Annotation of Motion Capture Data , 2009 .

[34]  Patrick Pérez,et al.  View-Independent Action Recognition from Temporal Self-Similarities , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Michael Gleicher,et al.  Parametric motion graphs , 2007, SI3D.

[36]  Sebastian Nowozin,et al.  Action Points: A Representation for Low-latency Online Human Action Recognition , 2012 .

[37]  Luc Van Gool,et al.  Metric Learning from Poses for Temporal Clustering of Human Motion , 2012, BMVC.

[38]  Michael I. Jordan,et al.  Sharing Features among Dynamical Systems with Beta Processes , 2009, NIPS.

[39]  Jernej Barbic,et al.  Segmenting Motion Capture Data into Distinct Behaviors , 2004, Graphics Interface.

[40]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[41]  Manuel Davy,et al.  An online kernel change detection algorithm , 2005, IEEE Transactions on Signal Processing.

[42]  Parvaneh Saeedi,et al.  Moving Region Segmentation From Compressed Video Using Global Motion Estimation and Markov Random Fields , 2011, IEEE Transactions on Multimedia.

[43]  Arno Zinke,et al.  Fast local and global similarity searches in large motion capture databases , 2010, SCA '10.

[44]  Ali Shokoufandeh,et al.  Unsupervised Motion Segmentation Using Metric Embedding of Features , 2015, SIMBAD.

[45]  Meinard Müller,et al.  Motion templates for automatic classification and retrieval of motion capture data , 2006, SCA '06.

[46]  C.-C. Jay Kuo,et al.  Automatic Human Mocap Data Classification , 2014, IEEE Transactions on Multimedia.

[47]  Nadia Magnenat-Thalmann,et al.  Human Motion Capture Data Tailored Transform Coding , 2014, IEEE Transactions on Visualization and Computer Graphics.

[48]  Gang Yu,et al.  Discriminative Orderlet Mining for Real-Time Recognition of Human-Object Interaction , 2014, ACCV.

[49]  Huaijiang Sun,et al.  Automated human motion segmentation via motion regularities , 2013, The Visual Computer.

[50]  Helena M. Mentis,et al.  Instructing people for training gestural interactive systems , 2012, CHI.

[51]  Richard Bowden,et al.  MIMiC: Multimodal Interactive Motion Controller , 2011, IEEE Transactions on Multimedia.

[52]  Gérard G. Medioni,et al.  Structured Time Series Analysis for Human Action Segmentation and Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Nicola J. Ferrier,et al.  Repetitive motion analysis: segmentation and event classification , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Ramakant Nevatia,et al.  Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class AdaBoost , 2006, ECCV.

[55]  Maja J. Mataric,et al.  A spatio-temporal extension to Isomap nonlinear dimension reduction , 2004, ICML.

[56]  Peter Grosche,et al.  Automated Segmentation of Folk Song Field Recordings , 2012, ITG Conference on Speech Communication.

[57]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[58]  Ling Shao,et al.  Linear regression motion analysis for unsupervised temporal segmentation of human actions , 2014, IEEE Winter Conference on Applications of Computer Vision.

[59]  Mari Ostendorf,et al.  From HMM's to segment models: a unified view of stochastic modeling for speech recognition , 1996, IEEE Trans. Speech Audio Process..

[60]  Paul Fearnhead,et al.  Exact and efficient Bayesian inference for multiple changepoint problems , 2006, Stat. Comput..

[61]  Lap-Pui Chau,et al.  A Fuzzy Clustering Algorithm for Virtual Character Animation Representation , 2011, IEEE Transactions on Multimedia.

[62]  Petros Daras,et al.  Quaternionic Signal Processing Techniques for Automatic Evaluation of Dance Performances From MoCap Data , 2014, IEEE Transactions on Multimedia.

[63]  Tobias Schreck,et al.  MotionExplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation , 2013, IEEE Transactions on Visualization and Computer Graphics.

[64]  Mamun Bin Ibne Reaz,et al.  Surface Electromyography Signal Processing and Classification Techniques , 2013, Sensors.

[65]  Liang Zhang,et al.  Hierarchical Method for Segmentation by Classification of Motion Capture Data , 2013, Virtual Realities.