Molecular beam epitaxial growth of GaAs on Si(211)

The molecular beam epitaxial growth of GaAs on Si(211) has been investigated. Theoretical considerations had suggested the (211) orientation to be particularly suitable for the nucleation and growth of a zincblende‐type compound semiconductor on a diamond‐type elemental one. The experimental results support the theoretical prediction. Morphologies of thin (≤0.1 μm) (211) layers are substantially better than for (100) layers, which nucleate poorly and require large layer thicknesses (≂1μm) to yield good morphologies. When the (211) layer growth is initiated with a thin (GaAs/Al, Ga)As superlattice buffer (0.1 μm), consisting of 10 periods of 5+5 nm, the (211) morphology rivals that of GaAs(100) homoepitaxial growth. Chemical etching studies as well as transmission electron microscope investigations show the layers to have the (211)B orientation and to be free of antiphase domains, both as predicted. The (211) layers show strong photoluminescence at 4 K. Not intentionally doped layers are n type, with elect...

[1]  J. Foord Thin films and interfaces II. : Volume 25. Materials Research Society Symposia Proceedings, J.E. Baglin, D.R. Campbell and W.K. Chu (Editors). Elsevier, New York, 1984, xv + 684 pp., Dfl. 265.00. , 1985 .

[2]  R. Fischer,et al.  GaAs/AlGaAs multiquantum wells grown on nonpolar semiconductor substrates , 1985 .

[3]  H. Kroemer,et al.  Summary Abstract: MBE growth of GaAs and GaP on Si(211) , 1985 .

[4]  W. I. Wang Summary Abstract: Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si(100) and Ge(100) , 1985 .

[5]  B‐Y. Tsaur,et al.  Metal‐semiconductor field‐effect transistors fabricated in GaAs layers grown directly on Si substrates by molecular beam epitaxy , 1984 .

[6]  W. Kopp,et al.  GaAs/AlGaAs MODFET's grown on , 1984, IEEE Electron Device Letters.

[7]  A. Kahn,et al.  Surface structure of GaAs(211) , 1984 .

[8]  Molecular beam epitaxy of GaAs and AlGaAs on Si , 1984 .

[9]  T. H. Windhorn,et al.  AlGaAs double‐heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate , 1984 .

[10]  R. Fischer,et al.  Polar semiconductor quantum wells on nonpolar substrates: (Al,Ga)As/GaAs on (100)Ge , 1984 .

[11]  R. E. Hayes,et al.  Growth and patterning of GaAs/Ge single crystal layers on Si substrates by molecular beam epitaxy , 1984 .

[12]  J. P. Gowers TEM image contrast from antiphase domains in GaAs: Ge(001) grown by MBE , 1984 .

[13]  Wei Wang,et al.  Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100) , 1984 .

[14]  S. Wright,et al.  Molecular beam epitaxial growth of GaP on Si , 1984 .

[15]  Herbert Kroemer,et al.  Heterostructure devices: A device physicist looks at interfaces , 1983 .

[16]  J. P. Gowers,et al.  Some observations on Ge:GaAs(001) and GaAs:Ge(001) interfaces and films , 1983 .

[17]  S. Wright,et al.  Polar‐on‐nonpolar epitaxy: Sublattice ordering in the nucleation and growth of GaP on Si(211) surfaces , 1982 .

[18]  Herbert Kroemer,et al.  On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende‐on‐diamond systems , 1980 .

[19]  R. Kaplan,et al.  LEED study of the stepped surface of vicinal Si (100) , 1980 .

[20]  H. Kroemer,et al.  Reduction of oxides on silicon by heating in a gallium molecular beam at 800 °Ca) , 1980 .

[21]  B. Olshanetsky,et al.  Leed studies of vicinal surfaces of silicon , 1979 .

[22]  E. A. Kraut,et al.  Polar heterojunction interfaces , 1978 .

[23]  K. Morizane Antiphase domain structures in GaP and GaAs epitaxial layers grown on Si and Ge , 1977 .

[24]  Yasoo Harada,et al.  Preferential Etching and Etched Profile of GaAs , 1971 .