Lattices which are good for (almost) everything

We define an ensemble of lattices, and show that for asymptotically high dimension most of its members are simultaneously good as sphere packings, sphere coverings, additive white Gaussian noise (AWGN) channel codes and mean-squared error (MSE) quantization codes. These lattices are generated by applying Construction A to a random linear code over a prime field of growing size, i.e., by "lifting" the code to /spl Ropf//sup n/.

[1]  Jacob Ziv,et al.  On universal quantization , 1985, IEEE Trans. Inf. Theory.

[2]  H. Minkowski Dichteste gitterförmige Lagerung kongruenter Körper , 1904 .

[3]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[4]  Uri Erez,et al.  Error exponents of modulo-additive noise channels with side information at the transmitter , 2001, IEEE Trans. Inf. Theory.

[5]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[6]  L. Turner Key Papers in the Development of Information Theory , 1975 .

[7]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[8]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[9]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[10]  E. Gilbert A comparison of signalling alphabets , 1952 .

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[13]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[14]  Tamás Linder,et al.  Corrected proof of de Buda's theorem , 1993, IEEE Trans. Inf. Theory.

[15]  John N. Pierce Limit distribution of the minimum distance of random linear codes , 1967, IEEE Trans. Inf. Theory.

[16]  Meir Feder,et al.  On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.

[17]  Philippe Piret,et al.  Do most binary linear codes achieve the Goblick bound on the covering radius? , 1986, IEEE Trans. Inf. Theory.

[18]  Meir Feder,et al.  Random coding techniques for nonrandom codes , 1999, IEEE Trans. Inf. Theory.

[19]  T. J. Goblick,et al.  Coding for a discrete information source with a distortion measure , 1963 .

[20]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[21]  Tamás Linder,et al.  On the asymptotic tightness of the Shannon lower bound , 1994, IEEE Trans. Inf. Theory.

[22]  Meir Feder,et al.  On universal quantization by randomized uniform/lattice quantizers , 1992, IEEE Trans. Inf. Theory.

[23]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[24]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[25]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[26]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[27]  Rüdiger L. Urbanke,et al.  Lattice Codes Can Achieve Capacity on the AWGN Channel , 1998, IEEE Trans. Inf. Theory.

[28]  C. A. Rogers A note on coverings , 1957 .

[29]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[30]  Paul L. Zador,et al.  Asymptotic quantization error of continuous signals and the quantization dimension , 1982, IEEE Trans. Inf. Theory.

[31]  R. Dobrushin Asymptotic Optimality of Group and Systematic Codes for Some Channels , 1963 .

[32]  Rudi de Buda,et al.  Some optimal codes have structure , 1989, IEEE J. Sel. Areas Commun..

[33]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[34]  G. Butler,et al.  Simultaneous Packing and Covering in Euclidean Space , 1972 .

[35]  C. A. Rogers Lattice coverings of space , 1959 .

[36]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[37]  Tamás Linder,et al.  Mismatch in high-rate entropy-constrained vector quantization , 2003, IEEE Trans. Inf. Theory.

[38]  T. Linder,et al.  Corrected proof of de Buda's theorem (lattice channel codes) , 1993 .

[39]  Gérard D. Cohen,et al.  A nonconstructive upper bound on covering radius , 1983, IEEE Trans. Inf. Theory.

[40]  G. David Forney,et al.  On the Duality of Coding and Quantizing , 1992, Coding And Quantization.

[41]  Gregory Poltyrev,et al.  On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.