A Fourier Domain Framework for Variational Image Registration

Image registration is a widely used task in image analysis, having applications in various fields. Its classical formulation is usually given in the spatial domain. In this paper, a novel theoretical framework defined in the frequency domain is proposed for approaching the multidimensional image registration problem. The variational minimization of the joint energy functional is performed entirely in the frequency domain, leading to a simple formulation and design, and offering important computational savings if the multidimensional FFT algorithm is used. Therefore the proposed framework provides more efficient implementations of the most common registration methods than already existing approaches, adding simplicity to the variational image registration formulation and allowing for an easy extension to higher dimensions by using the multidimensional Fourier transform of discrete multidimensional signals. The new formulation also provides an interesting framework to design tailor-made regularization models apart from the classical, spatial domain based schemes. Simulation examples validate the theoretical results.

[1]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[2]  O. Faugeras,et al.  A variational approach to multi-modal image matching , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[3]  Zhijun Zhang,et al.  Consistent multi-modal non-rigid registration based on a variational approach , 2006, Pattern Recognit. Lett..

[4]  J. Meyer Generalized Inverses (Theory And Applications) (Adi Ben-Israel and Thomas N. E. Greville) , 1976 .

[5]  Stefan Henn,et al.  A Multigrid Method for a Fourth-Order Diffusion Equation with Application to Image Processing , 2005, SIAM J. Sci. Comput..

[6]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[7]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[8]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[9]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Gary E. Christensen,et al.  Deformable Shape Models for Anatomy , 1994 .

[11]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[12]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[13]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[14]  Paul Suetens,et al.  Validation of non-rigid image registration using mutual information , 2004 .

[15]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[16]  A. Ardeshir Goshtasby,et al.  Registration of images with geometric distortions , 1988 .

[17]  C. Broit Optimal registration of deformed images , 1981 .

[18]  N. Papenberg,et al.  A Fast and Flexible Image Registration Toolbox Design and Implementation of the General Approach , 2006 .

[19]  Stefan Henn,et al.  A Translation and Rotation Invariant Gauss–Newton Like Scheme for Image Registration , 2006 .

[20]  Yali Amit,et al.  A Nonlinear Variational Problem for Image Matching , 1994, SIAM J. Sci. Comput..

[21]  Jan Modersitzki,et al.  Fast image registration - a variational approach , 2003 .

[22]  Paul Suetens,et al.  Medical image registration using mutual information , 2003, Proc. IEEE.

[23]  Jan Modersitzki,et al.  Fast inversion of matrices arising in image processing , 1999, Numerical Algorithms.

[24]  Eldad Haber,et al.  Cofir: Coarse and Fine Image Registration , 2004 .

[25]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[26]  Takeyoshi Dohi,et al.  Multimodality Deformable Registration of Pre- and Intraoperative Images for MRI-guided Brain Surgery , 1998, MICCAI.

[27]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[28]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[29]  Lawrence H. Staib,et al.  Elastic Model Based Non-rigid Registration Incorporation Statistical Shape Information , 1998, MICCAI.

[30]  Ulf-Dietrich Braumann,et al.  Influence of the boundary conditions on the result of non-linear image registration , 2005, IEEE International Conference on Image Processing 2005.

[31]  Stefan Henn,et al.  A Full Curvature Based Algorithm for Image Registration , 2006, Journal of Mathematical Imaging and Vision.

[32]  Stefan Heldmann,et al.  A Fast and Flexible Image Registration Toolbox , 2007, Bildverarbeitung für die Medizin.

[33]  Jan Modersitzki,et al.  FLIRT: A Flexible Image Registration Toolbox , 2003, WBIR.

[34]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[35]  Stefan Henn,et al.  Image Registration Based on Multiscale Energy Information , 2005, Multiscale Model. Simul..

[36]  Otmar Scherzer,et al.  Inverse Problems, Image Analysis, and Medical Imaging , 2002 .

[37]  J. Alison Noble,et al.  Medical Image Processing , 1999 .

[38]  Paul Suetens,et al.  A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information , 2002, MICCAI.

[39]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[40]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[41]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[42]  J. Modersitzki,et al.  A unified approach to fast image registration and a new curvature based registration technique , 2004 .

[43]  Jan Modersitzki,et al.  Curvature Based Image Registration , 2004, Journal of Mathematical Imaging and Vision.

[44]  Stefan Henn,et al.  Multimodal Image Registration Using a Variational Approach , 2004, SIAM J. Sci. Comput..

[45]  Nicholas Ayache,et al.  The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration , 1998, MICCAI.

[46]  Martin Rumpf,et al.  Computational Methods for Nonlinear Image Registration , 2006 .