Kernel Sparse Representation-Based Classifier

Sparse representation-based classifier (SRC), a combined result of machine learning and compressed sensing, shows its good classification performance on face image data. However, SRC could not well classify the data with the same direction distribution. The same direction distribution means that the sample vectors belonging to different classes distribute on the same vector direction. This paper presents a new classifier, kernel sparse representation-based classifier (KSRC), based on SRC and the kernel trick which is a usual technique in machine learning. KSRC is a nonlinear extension of SRC and can remedy the drawback of SRC. To make the data in an input space separable, we implicitly map these data into a high-dimensional kernel feature space by using some nonlinear mapping associated with a kernel function. Since this kernel feature space has a very high (or possibly infinite) dimensionality, or is unknown, we have to avoid working in this space explicitly. Fortunately, we can indeed reduce the dimensionality of the kernel feature space by exploiting kernel-based dimensionality reduction methods. In the reduced subspace, we need to find sparse combination coefficients for a test sample and assign a class label to it. Similar to SRC, KSRC is also cast into an ℓ1-minimization problem or a quadratically constrained ℓ1 -minimization problem. Extensive experimental results on UCI and face data sets show KSRC improves the performance of SRC.

[1]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[2]  Manfred K. Warmuth,et al.  Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 1995, Machine Learning.

[3]  Weida Zhou,et al.  Support Vector Machines Based on the Orthogonal Projection Kernel of Father Wavelet , 2005, Int. J. Comput. Intell. Appl..

[4]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[5]  Li Zhang,et al.  On the sparseness of 1-norm support vector machines , 2010, Neural Networks.

[6]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[7]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[8]  Pei-Chann Chang,et al.  Generalized nonlinear discriminant analysis and its small sample size problems , 2011, Neurocomputing.

[9]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[10]  Li Zhang,et al.  Hidden space support vector machines , 2004, IEEE Transactions on Neural Networks.

[11]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[12]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[14]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[15]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[16]  David G. Stork,et al.  Pattern Classification , 1973 .

[17]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[18]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[19]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[20]  Liang-Tien Chia,et al.  Kernel Sparse Representation for Image Classification and Face Recognition , 2010, ECCV.

[21]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[22]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[23]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[24]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[25]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[26]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[27]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[28]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[29]  Allen Y. Yang,et al.  Feature Selection in Face Recognition: A Sparse Representation Perspective , 2007 .

[30]  Li Zhang,et al.  Wavelet support vector machine , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Volker Roth,et al.  Sparse Kernel Regressors , 2001, ICANN.

[32]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[34]  D. B. Gerham Characterizing virtual eigensignatures for general purpose face recognition , 1998 .

[35]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[37]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[38]  John Shawe-Taylor,et al.  Generalisation Error Bounds for Sparse Linear Classifiers , 2000, COLT.

[39]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[40]  D. Donoho,et al.  Basis pursuit , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[41]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[42]  Li Zhang,et al.  Hidden Space Principal Component Analysis , 2006, PAKDD.

[43]  A. Barron,et al.  Approximation and learning by greedy algorithms , 2008, 0803.1718.

[44]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[45]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[46]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .

[47]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .