Kernel Sparse Representation-Based Classifier
暂无分享,去创建一个
Ting Wang | Pei-Chann Chang | Jing Liu | Li Zhang | Weida Zhou | Fanzhang Li | Zhe Yan | P. Chang | Fanzhang Li | Jing Liu | Li Zhang | Weida Zhou | Zhe Yan | Ting Wang
[1] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[2] Manfred K. Warmuth,et al. Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 1995, Machine Learning.
[3] Weida Zhou,et al. Support Vector Machines Based on the Orthogonal Projection Kernel of Father Wavelet , 2005, Int. J. Comput. Intell. Appl..
[4] David J. Kriegman,et al. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.
[5] Li Zhang,et al. On the sparseness of 1-norm support vector machines , 2010, Neural Networks.
[6] R. Tibshirani. The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.
[7] David G. Stork,et al. Pattern Classification (2nd ed.) , 1999 .
[8] Pei-Chann Chang,et al. Generalized nonlinear discriminant analysis and its small sample size problems , 2011, Neurocomputing.
[9] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[10] Li Zhang,et al. Hidden space support vector machines , 2004, IEEE Transactions on Neural Networks.
[11] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[12] Allen Y. Yang,et al. Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[14] David J. Kriegman,et al. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.
[15] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[16] David G. Stork,et al. Pattern Classification , 1973 .
[17] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[18] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[19] Ronald A. DeVore,et al. Deterministic constructions of compressed sensing matrices , 2007, J. Complex..
[20] Liang-Tien Chia,et al. Kernel Sparse Representation for Image Classification and Face Recognition , 2010, ECCV.
[21] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[22] Guillermo Sapiro,et al. Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.
[23] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[24] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[25] Mário A. T. Figueiredo,et al. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.
[26] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[27] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[28] Andy Harter,et al. Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.
[29] Allen Y. Yang,et al. Feature Selection in Face Recognition: A Sparse Representation Perspective , 2007 .
[30] Li Zhang,et al. Wavelet support vector machine , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[31] Volker Roth,et al. Sparse Kernel Regressors , 2001, ICANN.
[32] David J. Kriegman,et al. Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[33] J. Mesirov,et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.
[34] D. B. Gerham. Characterizing virtual eigensignatures for general purpose face recognition , 1998 .
[35] David J. Kriegman,et al. From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[36] D. B. Graham,et al. Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .
[37] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[38] John Shawe-Taylor,et al. Generalisation Error Bounds for Sparse Linear Classifiers , 2000, COLT.
[39] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[40] D. Donoho,et al. Basis pursuit , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.
[41] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[42] Li Zhang,et al. Hidden Space Principal Component Analysis , 2006, PAKDD.
[43] A. Barron,et al. Approximation and learning by greedy algorithms , 2008, 0803.1718.
[44] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[45] E. Candes,et al. 11-magic : Recovery of sparse signals via convex programming , 2005 .
[46] Saburou Saitoh,et al. Theory of Reproducing Kernels and Its Applications , 1988 .
[47] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .