Terbium (III) Oxide (Tb2O3) Transparent Ceramics by Two-Step Sintering from Precipitated Powder

As a result of preliminary air calcination and subsequent reduction in a flowing NH3 atmosphere of the precursor from the liquid precipitation method for the first time, pure-phase Tb2O3 powder with an average particle size of 135 nm was prepared. The Tb2O3 magneto-optical transparent ceramics with the average grain size of 1.3 μm were successfully fabricated by vacuum pre-sintering and hot isostatic pressing post-treatment from the as-synthesized Tb2O3 powder. In-line transmittance values of Tb2O3 ceramics reach 70.3% at 633 nm, 78.1% at 1064 nm, and 79.4% at 1400 nm, respectively. Thanks to the high intrinsic concentration of Tb3+, Tb2O3 ceramics present high Verdet constants of −427.3 and −123.7 rad·T−1·m−1 at 633 and 1064 nm, which are about 3.1 and 3.4 times higher than those of commercial Tb3Ga5O12 crystals, respectively. Due to the excellent magneto-optical properties, Tb2O3 ceramics are promising candidates for the development of Faraday isolator toward compaction used in visible and near-infrared bands.

[1]  Zehua Zhou,et al.  Optical, thermal, and mechanical properties of (Y1−xScx)2O3 transparent ceramics , 2022, Journal of Advanced Ceramics.

[2]  R. Norwood,et al.  High Verdet Constant Materials for Magneto-Optical Faraday Rotation: A Review , 2022, Chemistry of Materials.

[3]  Liling Hu,et al.  Fabrication and comprehensive structural and spectroscopic properties of Er:Y2O3 transparent ceramics , 2021, Journal of Rare Earths.

[4]  F. Tian,et al.  Sintering parameter optimization of Tb 3 Al 5 O 12 magneto‐optical ceramics by vacuum sintering and HIP post‐treatment , 2021 .

[5]  Shiwei Wang,et al.  Preparation of (Tb1-xLux)2O3 transparent ceramics by solid solution for magneto-optical application , 2021 .

[6]  O. Palashov,et al.  Fabrication and performance evaluation of novel transparent ceramics RE:Tb3Ga5O12 (RE = Pr, Tm, Dy) toward magneto-optical application , 2021, Journal of Advanced Ceramics.

[7]  F. Tian,et al.  Fabrication, microstructure and optical characterizations of holmium oxide (Ho2O3) transparent ceramics , 2021 .

[8]  F. Tian,et al.  Fabrication of Dy2O3 Transparent Ceramics by Vacuum Sintering Using Precipitated Powders , 2020, Magnetochemistry.

[9]  Jiayue Xu,et al.  Fabrication and Magneto-Optical Property of (Dy0.7Y0.25La0.05)2O3 Transparent Ceramics by PLSH Technology , 2020, Magnetochemistry.

[10]  I. Snetkov,et al.  Faraday rotation in erbium oxide based ceramics , 2020 .

[11]  O. Palashov,et al.  Fabrication and characterizations of holmium oxide based magneto-optical ceramics , 2020 .

[12]  Shengming Zhou,et al.  Roles of zirconia-doping in the sintering process of high quality Tb3Al5O12 magneto-optic ceramics , 2020 .

[13]  O. Palashov,et al.  Characterizations of REE:Tb2O3 Magneto‐Optical Ceramics , 2019, physica status solidi (b).

[14]  Jiayue Xu,et al.  Fabrication and magneto-optical property of yttria stabilized Tb2O3 transparent ceramics , 2019 .

[15]  B. Lu,et al.  Production and optical properties of Ce 3+ ‐activated and Lu 3+ ‐stabilized transparent gadolinium aluminate garnet ceramics , 2019, Journal of the American Ceramic Society.

[16]  Shiwei Wang,et al.  Phase Transformation Process of Tb 2O 3 at Elevated Temperature , 2019, Scripta Materialia.

[17]  A. Ikesue,et al.  Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure , 2019, Materials.

[18]  S. Egorov,et al.  Sinterability of nanopowders of terbia solid solutions with scandia, yttria, and lutetia , 2018, Journal of Advanced Ceramics.

[19]  Jiangxu Li,et al.  Promising magneto-optical ceramics for high power Faraday isolators , 2018, Scripta Materialia.

[20]  B. Lu,et al.  Preparation and characterization of transparent magneto‐optical Ho 2 O 3 ceramics , 2018, Journal of the American Ceramic Society.

[21]  Sarbani Chakraborty,et al.  Study of different magneto-optic materials for current sensing applications , 2018, Journal of Sensors and Sensor Systems.

[22]  Jiangxu Li,et al.  Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids , 2018 .

[23]  Antonio Lucianetti,et al.  Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials , 2018, High Power Laser Science and Engineering.

[24]  Li Jiang,et al.  Research Progress on Magneto-optical Transparent Ceramics , 2018 .

[25]  S. Egorov,et al.  Synthesis and structural characterization of ultrafine terbium oxide powders , 2017 .

[26]  A. Ikesue,et al.  Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material , 2017 .

[27]  O. Palashov,et al.  Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics , 2016 .

[28]  Shengming Zhou,et al.  Fabrication and Performance Optimization of the Magneto-Optical (Tb1-xRx)3Al5O12(R=Y, Ce) Transparent Ceramics , 2012 .

[29]  Ahmad Monshi,et al.  Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD , 2012 .

[30]  Shengming Zhou,et al.  Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications , 2011 .

[31]  S. Khizroev,et al.  Magneto-optical Faraday effect in nanocrystalline oxides , 2011 .

[32]  M. Salavati‐Niasari,et al.  Sonochemical synthesis of Dy2(CO3)3 nanoparticles and their conversion to Dy2O3 and Dy(OH)3: Effects of synthesis parameters , 2010 .

[33]  A. Tok,et al.  Homogeneous precipitation of Dy2O3 nanoparticles-effects of synthesis parameters. , 2007, Journal of nanoscience and nanotechnology.

[34]  L. Eyring,et al.  The structures of Tb7O12 and Tb11O20 , 1993 .

[35]  W. Runde,et al.  A Study of Solid-Liquid Phase Equilibria of Trivalent Lanthanide and Actinide Ions in Carbonate Systems , 1992 .

[36]  P. Caro,et al.  The infrared spectra of rare earth carbonates , 1972 .

[37]  J. F. Dillon,et al.  Origin and Uses of the Faraday Rotation in Magnetic Crystals , 1968 .

[38]  Peter S. Pershan,et al.  Magneto‐Optical Effects , 1967 .

[39]  Nicholas F. Borrelli,et al.  Faraday Rotation in Glasses , 1964 .