A Holant Dichotomy: Is the FKT Algorithm Universal?

We prove a complexity dichotomy for complex-weighted Holant problems with an arbitrary set of symmetric constraint functions on Boolean variables. In the study of counting complexity, such as #CSP, there are problems which are #P-hard over general graphs but P-time solvable over planar graphs. A recurring theme has been that a holographic reduction [36] to FKT precisely captures these problems. This dichotomy answers the question: Is this a universal strategy? Surprisingly, we discover new planar tractable problems in the Holant framework (which generalizes #CSP) that are not expressible by a holographic reduction to FKT. In particular, the putative form of a dichotomy for planar Holant problems is false. Nevertheless, we prove a dichotomy for #CSP2, a variant of #CSP where every variable appears even times, that the presumed universality holds for #CSP2. This becomes an important tool in the proof of the full dichotomy, which refutes this universality in general. The full dichotomy says that the new P-time algorithms and the strategy of holographic reductions to FKT together are universal for these locally defined counting problems. As a special case of our new planar tractable problems, counting perfect matchings (#PM) over k-uniform hypergraphs is P-time computable when the incidence graph is planar and k ≥ 5. The same problem is #P-hard when k = 3 or k = 4, also a consequence of the dichotomy. More generally, over hypergraphs with specified hyperedge sizes and the same planarity assumption, #PM is P-time computable if the greatest common divisor (gcd) of all hyperedge sizes is at least 5.

[1]  Andrei A. Bulatov,et al.  The complexity of the counting constraint satisfaction problem , 2008, JACM.

[2]  Alexander Schrijver,et al.  Characterizing partition functions of the vertex model , 2011, 1102.4985.

[3]  Martin E. Dyer,et al.  On counting homomorphisms to directed acyclic graphs , 2006, JACM.

[4]  Leslie G. Valiant,et al.  Accidental Algorithms , 2006, FOCS.

[5]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[6]  Jin-Yi Cai,et al.  The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[7]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[8]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[9]  Jin-Yi Cai,et al.  Dichotomy for Holant problems of Boolean domain , 2011, SODA '11.

[10]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[11]  Peng Zhang,et al.  Computational complexity of counting problems on 3-regular planar graphs , 2007, Theor. Comput. Sci..

[12]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[13]  L. Lovász Operations with structures , 1967 .

[14]  Jin-Yi Cai,et al.  Holant problems and counting CSP , 2009, STOC '09.

[15]  Jason Morton,et al.  Holographic algorithms without matchgates , 2009, ArXiv.

[16]  Heng Guo,et al.  The Complexity of Planar Boolean #CSP with Complex Weights , 2012, ICALP.

[17]  Xi Chen,et al.  Complexity of Counting CSP with Complex Weights , 2011, J. ACM.

[18]  Jin-Yi Cai,et al.  Matchgates Revisited , 2013, Theory Comput..

[19]  Leslie G. Valiant Expressiveness of matchgates , 2002, Theor. Comput. Sci..

[20]  Martin E. Dyer,et al.  The complexity of weighted and unweighted #CSP , 2010, J. Comput. Syst. Sci..

[21]  Jin-Yi Cai,et al.  On Symmetric Signatures in Holographic Algorithms , 2009, Theory of Computing Systems.

[22]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[23]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[24]  P. Dienes,et al.  On tensor geometry , 1926 .

[25]  Jin-Yi Cai,et al.  Some Results on Matchgates and Holographic Algorithms , 2007, Int. J. Softw. Informatics.

[26]  Leslie G. Valiant,et al.  The Complexity of Symmetric Boolean Parity Holant Problems , 2013, SIAM J. Comput..

[27]  Dirk Llewellyn Vertigan On the computational complexity of tutte, jones, homfly and kauffman invariants (tutte polynomial, jones polynomial, homfly polynomial, kauffman polynomial) , 1991 .

[28]  Jin-Yi Cai,et al.  Holographic Algorithms Beyond Matchgates , 2014, ICALP.

[29]  László Lovász,et al.  The rank of connection matrices and the dimension of graph algebras , 2004, Eur. J. Comb..

[30]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[31]  Jin-Yi Cai,et al.  Non-negatively Weighted #CSP: An Effective Complexity Dichotomy , 2010, 2011 IEEE 26th Annual Conference on Computational Complexity.

[32]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[33]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[34]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[35]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[36]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[37]  Jin-Yi Cai,et al.  Holographic Algorithms with Matchgates Capture Precisely Tractable Planar_#CSP , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[38]  Jin-Yi Cai,et al.  Dichotomy theorems for holant problems , 2010 .

[39]  Alexander Schrijver Characterizing partition functions of the spin model by rank growth , 2012 .

[40]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[41]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[42]  Jin-Yi Cai,et al.  Holographic algorithms: From art to science , 2011, J. Comput. Syst. Sci..

[43]  Yu. M. Zinoviev,et al.  Spontaneous Magnetization in the Two-Dimensional Ising Model , 2003 .

[44]  Leslie G. Valiant Some observations on holographic algorithms , 2017, computational complexity.

[45]  Jin-Yi Cai,et al.  A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-negative Weights , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[46]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[47]  Jin-Yi Cai,et al.  The complexity of complex weighted Boolean #CSP , 2014, J. Comput. Syst. Sci..

[48]  Alexander Schrijver,et al.  Graph invariants in the spin model , 2009, J. Comb. Theory, Ser. B.

[49]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[50]  Elliott H. Lieb,et al.  A general Lee-Yang theorem for one-component and multicomponent ferromagnets , 1981 .

[51]  Jin-Yi Cai,et al.  A complete dichotomy rises from the capture of vanishing signatures: extended abstract , 2013, STOC '13.

[52]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1989, 30th Annual Symposium on Foundations of Computer Science.

[53]  Jin-Yi Cai,et al.  Spin systems on k-regular graphs with complex edge functions , 2012, Theor. Comput. Sci..

[54]  Martin E. Dyer,et al.  On the complexity of #CSP , 2010, STOC '10.

[55]  Dirk L. Vertigan,et al.  The Computational Complexity of Tutte Invariants for Planar Graphs , 2005, SIAM J. Comput..

[56]  Jin-Yi Cai,et al.  On the Theory of Matchgate Computations , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[57]  Marc Thurley The Complexity of Partition Functions on Hermitian Matrices , 2010, ArXiv.

[58]  L. Lovasz,et al.  Reflection positivity, rank connectivity, and homomorphism of graphs , 2004, math/0404468.

[59]  H. Lenstra,et al.  Algorithms in algebraic number theory , 1992, math/9204234.

[60]  Patrick J. Morandi Field and Galois theory , 1996 .

[61]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[62]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[63]  L. Carlitz Kloosterman sums and finite field extensions , 1969 .

[64]  Jin-Yi Cai,et al.  Computational Complexity of Holant Problems , 2011, SIAM J. Comput..

[65]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[66]  Jin-Yi Cai,et al.  Gadgets and anti-gadgets leading to a complexity dichotomy , 2012, ITCS '12.

[67]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[68]  Martin E. Dyer,et al.  The complexity of counting graph homomorphisms , 2000, Random Struct. Algorithms.

[69]  S. Margulies,et al.  Polynomial-time solvable #CSP problems via algebraic models and Pfaffian circuits , 2013, J. Symb. Comput..

[70]  Pinyan Lu,et al.  A Dichotomy for Real Weighted Holant Problems , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[71]  Jin-Yi Cai,et al.  Holographic algorithms: The power of dimensionality resolved , 2009, Theor. Comput. Sci..

[72]  R. Tennant Algebra , 1941, Nature.

[73]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[74]  Guoqiang Ge Testing equalities of multiplicative representations in polynomial time , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[75]  Richard J. Lipton,et al.  On Tractable Exponential Sums , 2010, FAW.