Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations

[1]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[2]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[3]  Yulong Xing,et al.  On the Advantage of Well-Balanced Schemes for Moving-Water Equilibria of the Shallow Water Equations , 2011, J. Sci. Comput..

[4]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[5]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[6]  Yulong Xing,et al.  High order well-balanced schemes , 2010 .

[7]  Q. Liang,et al.  Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .

[8]  Michael Dumbser,et al.  Well-Balanced High-Order Centred Schemes for Non-Conservative Hyperbolic Systems. Applications to Shallow Water Equations with Fixed and Mobile Bed , 2009 .

[9]  Ethan J. Kubatko,et al.  A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations , 2009 .

[10]  Mario Ricchiuto,et al.  Stabilized residual distribution for shallow water simulations , 2009, J. Comput. Phys..

[11]  Alexandre Ern,et al.  A well‐balanced Runge–Kutta discontinuous Galerkin method for the shallow‐water equations with flooding and drying , 2008 .

[12]  Fabien Marche,et al.  A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..

[13]  Mária Lukácová-Medvid'ová,et al.  Well-balanced finite volume evolution Galerkin methods for the shallow water equations , 2015, J. Comput. Phys..

[14]  Manuel Jesús Castro Díaz,et al.  On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas , 2007, J. Comput. Phys..

[15]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[16]  Manmohan Singh,et al.  Moving boundary shallow water flow above parabolic bottom topography , 2006 .

[17]  Anna Bernini,et al.  Fourth-order balanced source term treatment in central WENO schemes for shallow water equations , 2006, J. Comput. Phys..

[18]  O. Bokhove,et al.  Flooding and drying in discontinuous Galerkin discretizations of shallow water equations , 2006 .

[19]  Carlos Parés,et al.  NUMERICAL TREATMENT OF WET/DRY FRONTS IN SHALLOW FLOWS WITH A MODIFIED ROE SCHEME , 2006 .

[20]  Yulong Xing,et al.  High-Order Well-Balanced Finite Difference WENO Schemes for a Class of Hyperbolic Systems with Source Terms , 2006, J. Sci. Comput..

[21]  Yulong Xing,et al.  High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms , 2006, J. Comput. Phys..

[22]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[23]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[24]  Carlos Parés Madroñal,et al.  Numerical methods for nonconservative hyperbolic systems: a theoretical framework , 2006, SIAM J. Numer. Anal..

[25]  Yulong Xing,et al.  High order finite difference WENO schemes with the exact conservation property for the shallow water equations , 2005 .

[26]  Onno Bokhove,et al.  Flooding and Drying in Discontinuous Galerkin Finite-Element Discretizations of Shallow-Water Equations. Part 1: One Dimension , 2005, J. Sci. Comput..

[27]  Yulong Xing,et al.  A New Approach of High OrderWell-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms† , 2005 .

[28]  Carlos Parés,et al.  On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .

[29]  Spencer J. Sherwin,et al.  A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations , 2004 .

[30]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[31]  T. Gallouët,et al.  Some approximate Godunov schemes to compute shallow-water equations with topography , 2003 .

[32]  C. J. Apelt,et al.  PARAMETERS AFFECTING THE PERFORMANCE OF WETTING AND DRYING IN A TWO-DIMENSIONAL FINITE ELEMENT LONG WAVE HYDRODYNAMIC MODEL , 2003 .

[33]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[34]  Clint Dawson,et al.  Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations , 2002 .

[35]  Luka Sopta,et al.  ENO and WENO Schemes with the Exact Conservation Property for One-Dimensional Shallow Water Equations , 2002 .

[36]  Pilar García-Navarro,et al.  A numerical model for the flooding and drying of irregular domains , 2002 .

[37]  Doron Levy,et al.  CENTRAL-UPWIND SCHEMES FOR THE SAINT-VENANT SYSTEM , 2002 .

[38]  D. Causon,et al.  The surface gradient method for the treatment of source terms in the shallow-water equations , 2001 .

[39]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[40]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[41]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[42]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[43]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[44]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[45]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[46]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[47]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[48]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .