All-laser-driven Thomson X-ray sources

We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications – in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.

[1]  S. H. Park,et al.  First measurement of the near-threshold 2 H ( γ → , n ) p analyzing power using a free-electron laser based γ -ray source , 2000 .

[2]  S R Nagel,et al.  Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. , 2009, Physical review letters.

[3]  Jun Zhang,et al.  Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light. , 2014, Optics letters.

[4]  S. Hooker,et al.  Developments in laser-driven plasma accelerators , 2013, Nature Photonics.

[5]  G. Blumenthal,et al.  BREMSSTRAHLUNG, SYNCHROTRON RADIATION, AND COMPTON SCATTERING OF HIGH- ENERGY ELECTRONS TRAVERSING DILUTE GASES. , 1970 .

[6]  G. Shvets,et al.  Electron self-injection and trapping into an evolving plasma bubble. , 2009, Physical review letters.

[7]  Jun Zhang,et al.  Compact source of narrowband and tunable X-rays for radiography , 2015 .

[8]  Bob Nagler,et al.  GeV plasma accelerators driven in waveguides , 2007 .

[9]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[10]  Erik Lefebvre,et al.  Electron self-injection into an evolving plasma bubble: Quasi monoenergetic laser-plasma acceleration in the blowout regime , 2011 .

[11]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[12]  Anatoly Maksimchuk,et al.  Experimental observation of relativistic nonlinear Thomson scattering , 1998, Nature.

[13]  Juhao Wu,et al.  Erratum: High-Gain Thompson-Scattering X-Ray Free-Electron Laser by Time-Synchronic Laterally Tilted Optical Wave [Phys. Rev. Lett.110, 064802 (2013)] , 2013 .

[14]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[15]  A Pak,et al.  Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator. , 2011, Physical review letters.

[16]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[17]  Xiaoyi Zhang,et al.  Recent advances on ultrafast X-ray spectroscopy in the chemical sciences , 2014 .

[18]  Richard H. Milburn,et al.  ELECTRON SCATTERING BY AN INTENSE POLARIZED PHOTON FIELD , 1963 .

[19]  Nuclear excitation by a zeptosecond multi-MeV laser pulse. , 2010, Physical review letters.

[20]  Y. Lau,et al.  Backscattering of an intense laser beam by an electron. , 2003, Physical review letters.

[21]  Richard Kowalczyk,et al.  Nonlinear Thomson scattering: A tutorial , 2003 .

[22]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[23]  D. A. Burton,et al.  Aspects of electromagnetic radiation reaction in strong fields , 2014, 1409.7707.

[24]  Zulfikar Najmudin,et al.  Laser wakefield accelerator based light sources: potential applications and requirements , 2014 .

[25]  Eric Esarey,et al.  Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas , 1993 .

[26]  Charles A. Brau,et al.  Modern Problems in Classical Electrodynamics , 2003 .

[27]  Eric Esarey,et al.  Femtosecond x-rays from Thomson scattering using laser wakefield accelerators , 2001 .

[28]  Eric Esarey,et al.  Tunable laser plasma accelerator based on longitudinal density tailoring , 2011 .

[29]  Dodd,et al.  Laser injection of ultrashort electron pulses into Wakefield plasma waves. , 1996, Physical review letters.

[30]  J. Eberly VII Interaction of Very Intense Light with Free Electrons , 1969 .

[31]  Victor Malka,et al.  Review of Laser Wakefield Accelerators , 2013 .

[32]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Hiroyuki Daido,et al.  Review of soft x-ray laser researches and developments , 2002 .

[35]  Zhirong Huang,et al.  Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. , 2012, Physical review letters.

[36]  Jean-Luc Vay,et al.  Novel methods in the Particle-In-Cell accelerator Code-Framework Warp , 2012 .

[37]  C. Keitel,et al.  Strong signatures of radiation reaction below the radiation-dominated regime. , 2008, Physical review letters.

[38]  Gerard Mourou,et al.  Generation of ultrahigh peak power pulses by chirped pulse amplification , 1988 .

[39]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[40]  Jyhpyng Wang,et al.  Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed plasma waveguide , 2011 .

[41]  Donald Umstadter Publications Evolution of a Plasma Waveguide Created during Relativistic-Ponderomotive Self-Channeling of an Intense Laser Pulse , 1998 .

[42]  Bahman Hafizi,et al.  Laser-pumped coherent x-ray free-electron laser , 2009 .

[43]  彭飞,et al.  点铁成金——纳米让金属更耐磨 Turn Iron into Gold by Touching—To Improve the Wear Resistance of Metallic Materials by Nano-Modification , 2013 .

[44]  D. Habs,et al.  Few-cycle laser-driven electron acceleration. , 2009, Physical review letters.

[45]  Antoine Rousse,et al.  Compton scattering x-ray sources driven by laser wakefield acceleration , 2005 .

[46]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[47]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[48]  Donald P. Umstadter,et al.  Tunable monoenergetic electron beams from independently controllable laser-wakefield acceleration and injection , 2015 .

[49]  H Schwoerer,et al.  Thomson-backscattered x rays from laser-accelerated electrons. , 2006, Physical review letters.

[50]  Li Fang,et al.  Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser , 2013 .

[51]  G. Fiocco,et al.  THOMSON SCATTERING OF OPTICAL RADIATION FROM AN ELECTRON BEAM , 1963 .

[52]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[53]  C. Keitel,et al.  Ultrahigh Brilliance Multi-MeV γ-Ray Beams from Nonlinear Relativistic Thomson Scattering. , 2014, Physical review letters.

[54]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[55]  Mora,et al.  Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  G. Rybicki,et al.  Inverse compton reflection: Time-dependent theory , 1979 .

[57]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[58]  Esarey,et al.  Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  P. Hysica,et al.  A Quantum Theory of the Scattering of X-rays by Light Elements , 2011 .

[60]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[61]  M. Bussmann,et al.  Optical free-electron lasers with Traveling-Wave Thomson-Scattering , 2014 .

[62]  Ferenc Krausz,et al.  Density-transition based electron injector for laser driven wakefield accelerators , 2010 .

[63]  H Burau,et al.  PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster , 2010, IEEE Transactions on Plasma Science.

[64]  D. Bruhwiler,et al.  Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime , 2012, Journal of Plasma Physics.

[65]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[66]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[67]  Kwanpyo Kim,et al.  Femtosecond X-ray Pulses at 0.4 Å Generated by 90° Thomson Scattering: A Tool for Probing the Structural Dynamics of Materials , 1996, Science.

[68]  G. Shvets,et al.  Holographic visualization of laser wakefields , 2010 .

[69]  Anders Persson,et al.  Laser-plasma electron acceleration in dielectric capillary tubes , 2011 .

[70]  S. Chen,et al.  MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. , 2013, Physical review letters.

[71]  L. Gremillet,et al.  Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes , 2012 .

[72]  Eric Esarey,et al.  Electron Injection into Plasma Wake Fields by Colliding Laser Pulses , 1997 .

[73]  Ricardo Fonseca,et al.  Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames , 2010 .

[74]  G. Mourou,et al.  Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons , 1996, Science.

[75]  Jun Zhang,et al.  Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[76]  B. Zhao,et al.  Selective activation with all-laser-driven Thomson γ-rays , 2013, 2013 IEEE International Conference on Technologies for Homeland Security (HST).

[77]  Juhao Wu,et al.  High-gain Thompson-scattering x-ray free-electron laser by time-synchronic laterally tilted optical wave. , 2013, Physical review letters.

[78]  C P Khattak,et al.  Titanium sapphire laser characteristics. , 1988, Applied optics.

[79]  Antonio Lucianetti,et al.  High-Contrast, High-Intensity Petawatt-Class Laser and Applications , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[80]  A. E. Dangor,et al.  Electron acceleration from the breaking of relativistic plasma waves , 1995, Nature.

[81]  P. Sprangle,et al.  Nonlinear theory of intense laser-plasma interactions. , 1990, Physical review letters.

[82]  Stepan Bulanov,et al.  Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam , 2012 .

[83]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[84]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[85]  C. B. Schroeder,et al.  Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels , 2014, 1406.1832.

[86]  H. Quiney Coherent diffractive imaging using short wavelength light sources , 2010 .

[87]  Satoshi Itoh,et al.  32 Neのスペクトロスコピーと「island of inversion」 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2009 .

[88]  D. Umstadter Extreme X Rays Probe Extreme Matter , 2012 .

[89]  K. A. Marsh,et al.  Trapped electron acceleration by a laser-driven relativistic plasma wave , 1994, Nature.

[90]  Mark Bowers,et al.  NIF injection laser system , 2004, SPIE LASE.

[91]  U Schramm,et al.  Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. , 2008, Physical review letters.

[92]  J. Rafelski,et al.  Effects of radiation reaction in relativistic laser acceleration , 2010, 1005.3980.

[93]  Tae Moon Jeong,et al.  Femtosecond petawatt laser , 2014 .

[94]  E. Sarachik,et al.  Classical theory of the scattering of intense laser radiation by free electrons , 1970 .

[95]  W. C. Röntgen,et al.  Ueber eine neue Art von Strahlen , 1898 .

[96]  Zhi‐zhan Xu,et al.  All-optical cascaded laser wakefield accelerator using ionization-induced injection. , 2011, Physical review letters.

[97]  D. Umstadter Laser-Wakefield Accelerators: Glass-guiding benefits , 2011 .

[98]  Nail A. Gumerov,et al.  Fast parallel Particle-To-Grid interpolation for plasma PIC simulations on the GPU , 2008, J. Parallel Distributed Comput..

[99]  Ilan Ben-Zvi,et al.  Observation of the second harmonic in Thomson scattering from relativistic electrons. , 2006, Physical review letters.

[100]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[101]  G. Shvets,et al.  Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror , 2014, 1411.2134.

[102]  Tae Jun Yu,et al.  Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. , 2013, Physical review letters.

[103]  R. F. O’Connell Radiation reaction: general approach and applications, especially to electrodynamics , 2012, 1204.5699.

[104]  Donald Umstadter,et al.  Spectral bandwidth reduction of Thomson scattered light by pulse chirping , 2013 .

[105]  Victor Malka,et al.  Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel , 2010 .

[106]  F. Hartemann,et al.  Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays. , 2010, Optics letters.

[107]  A. Tonchev,et al.  Discrete deexcitations in U235 below 3 MeV from nuclear resonance fluorescence , 2011 .

[108]  Wei Lu,et al.  A nonlinear theory for multidimensional relativistic plasma wave wakefieldsa) , 2006 .

[109]  Erik Lefebvre,et al.  Generation of tunable, 100–800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regime , 2012 .

[110]  Alain C. Diebold,et al.  Advances in CD‐Metrology (CD‐SAXS, Mueller Matrix based Scatterometry, and SEM) , 2011 .

[111]  M. Preger,et al.  Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons. , 1996, Physics in medicine and biology.

[112]  S. G. Anderson,et al.  Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ -ray source , 2010 .

[113]  K. Weeks Radiation therapy potential of intense backscattered compton photon beams , 1997 .

[114]  P. G. Thirolf,et al.  Vision of nuclear physics with photo-nuclear reactions by laser-driven $\sf \gamma$ beams , 2009 .

[115]  P Suortti,et al.  Medical applications of synchrotron radiation. , 2003, Physics in medicine and biology.