On the minimum distance of negacyclic codes with two zeros

Abstract We investigate the minimum distance of q-ary negacyclic codes of length q m − 1 2 generated by a product of two distinct minimal polynomials. A necessary and sufficient condition on the minimum distance of such negacyclic codes is given. Several classes of optimal quinary negacyclic codes with parameters [ ( 5 m − 1 ) / 2 , ( 5 m − 1 ) / 2 − 2 m , 4 ] are constructed. The dual codes of a subclass of the quinary negacyclic codes are studied. A comparison with cyclic codes is also presented.

[1]  Cunsheng Ding,et al.  Linear codes from perfect nonlinear mappings and their secret sharing schemes , 2005, IEEE Transactions on Information Theory.

[2]  Xueli Wang,et al.  Almost Perfect Nonlinear Power Functions in Odd Characteristic , 2011, IEEE Transactions on Information Theory.

[3]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[4]  Garry Hughes Constacyclic codes, cocycles and a u+v | u-v construction , 2000, IEEE Trans. Inf. Theory.

[5]  Victor Zinoviev,et al.  On the Minimum Distances of Non-Binary Cyclic Codes , 1999, Des. Codes Cryptogr..

[6]  Tor Helleseth,et al.  New Families of Almost Perfect Nonlinear Power Mappings , 1999, IEEE Trans. Inf. Theory.

[7]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[8]  Victor Zinoviev,et al.  ON BINARY CYCLIC CODES WITH MINIMUM DISTANCE D = 3 , 1997 .

[9]  Emina Soljanin,et al.  Bounds on Codes Based on Graph Theory , 2007, 2007 IEEE International Symposium on Information Theory.

[10]  Cunsheng Ding,et al.  Optimal Ternary Cyclic Codes From Monomials , 2013, IEEE Transactions on Information Theory.

[11]  Rudolf Lide,et al.  Finite fields , 1983 .

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  Guanghui Zhang,et al.  Constructions of New Nonbinary Quantum Codes , 2015 .

[14]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[15]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[16]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[17]  JinMei Fan Optimal p-ary cyclic codes with minimum distance four , 2017, ArXiv.

[18]  Zhengbang Zha,et al.  Power functions with low uniformity on odd characteristic finite fields , 2010 .

[19]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[20]  Zhengchun Zhou,et al.  A class of optimal ternary cyclic codes and their duals , 2015, Finite Fields Their Appl..

[21]  Hongwei Liu,et al.  Constacyclic codes over finite fields , 2012, Finite Fields Their Appl..

[22]  Xiwang Cao,et al.  Optimal p-ary cyclic codes with minimum distance four from monomials , 2016, Cryptography and Communications.

[23]  Cunsheng Ding,et al.  Optimal ternary cyclic codes with minimum distance four and five , 2013, Finite Fields Their Appl..

[24]  Danyo Danev,et al.  A family of constacyclic ternary quasi-perfect codes with covering radius 3 , 2011, Des. Codes Cryptogr..

[25]  Keqin Feng,et al.  Cyclic Codes and Sequences From Generalized Coulter–Matthews Function , 2008, IEEE Transactions on Information Theory.