Existence of unique solution to nonlinear mixed Volterra Fredholm-Hammerstein integral equations in complex-valued fuzzy metric spaces

The purpose of this article is to investigate the existence of unique solution for the following mixed nonlinear Volterra Fredholm-Hammerstein integral equation considered in complex plane; (0.1) ξ ( τ ) = g ( t ) + ρ ∫ 0 τ K 1 ( τ , ℘ ) ϝ 1 ( ℘ , ξ ( ℘ ) ) d ℘ + ϱ ∫ 0 1 K 2 ( τ , ℘ ) ϝ 2 ( ℘ , ξ ( ℘ ) ) d ℘ , such that ξ = ξ 1 + ξ 2 , ξ 1 , ξ 2 ∈ ( C ( [ 0 , 1 ] ) , R ) g = g 1 + g 2 , g l : [ 0 , 1 ] → R , l = 1 , 2 , ϝ l ( ℘ , ξ ( ℘ ) ) = ϝ l 1 * ( ℘ , ξ 1 * ) + i ϝ l 2 * ( ℘ , ξ 2 * ) , ϝ lj * : [ 0 , 1 ] × R → R for l , j = 1 , 2 , and ξ 1 * , ξ 2 * ∈ ( C ( [ 0 , 1 ] ) , R ) K l ( t , ℘ ) = K l 1 * ( t , ℘ ) + iK l 2 * ( t , ℘ ) , for l , j = 1 , 2 and K lj * : [ 0 , 1 ] 2 → R , where ρ and ϱ are constants, g (t), the kernels Kl (τ, ℘) and the nonlinear functions ϝ1 (℘, ξ (℘)), ϝ 2 (℘, ξ (℘)) are continuous functions on the interval 0 ≤ τ ≤ 1. In this direction we apply fixed point results for self mappings with the concept of (ψ, ϕ) contractive condition in the setting of complex-valued fuzzy metric spaces. This study will be useful in the development of the theory of fuzzy fractional differential equations in a more general setting.

[1]  T. Abdeljawad Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals. , 2019, Chaos.

[2]  J. Buckley,et al.  Fuzzy complex analysis I: differentiation , 1991 .

[3]  S. Adhikari,et al.  Integral equations of scattering in one dimension , 2001, quant-ph/0103018.

[4]  R. Rodríguez-López,et al.  Fixed point results for contractive mappings in complex valued fuzzy metric spaces , 2018, Fixed Point Theory.

[5]  Suayip Yüzbasi,et al.  A collocation approach for solving systems of linear Volterra integral equations with variable coefficients , 2011, Comput. Math. Appl..

[6]  Thabet Abdeljawad,et al.  KKM mappings in cone metric spaces and some fixed point theorems , 2010 .

[7]  Ivan Kramosil,et al.  Fuzzy metrics and statistical metric spaces , 1975, Kybernetika.

[8]  Abdon Atangana,et al.  Editorial: Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems , 2020, Chaos, Solitons & Fractals.

[9]  Ravi P. Agarwal,et al.  On the concept of solution for fractional differential equations with uncertainty , 2010 .

[10]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[11]  Dong Qiu,et al.  Notes on "On the restudy of fuzzy complex analysis: Part I and Part II" , 2008, Fuzzy Sets Syst..

[12]  Akbar Azam,et al.  Common Fixed Point Theorems in Complex Valued Metric Spaces , 2011 .

[13]  Vahid Parvaneh,et al.  Some fixed point results in ordered Gp-metric spaces , 2013 .

[14]  H. Thieme A model for the spatial spread of an epidemic , 1977, Journal of mathematical biology.

[15]  Ravi P. Agarwal,et al.  Fuzzy fractional integral equations under compactness type condition , 2012 .

[16]  Dong Qiu,et al.  Notes on fuzzy complex analysis , 2009, Fuzzy Sets Syst..

[17]  COMPLETION OF CONE METRIC SPACES , 2010 .

[18]  Mehmet Sezer,et al.  Bessel polynomial solutions of high-order linear Volterra integro-differential equations , 2011, Comput. Math. Appl..

[19]  Vasile Lupulescu,et al.  A Schauder fixed point theorem in semilinear spaces and applications , 2013 .

[20]  J. Buckley Fuzzy complex numbers , 1989 .

[21]  Jafar Saberi-Nadjafi,et al.  The variational iteration method: A highly promising method for solving the system of integro-differential equations , 2008, Comput. Math. Appl..

[22]  Mariusz Grabiec,et al.  Fixed points in fuzzy metric spaces , 1988 .

[23]  Abraham Kandel,et al.  Complex fuzzy sets , 2002, IEEE Trans. Fuzzy Syst..

[24]  Juan E. Nápoles Valdés,et al.  New Hermite-Hadamard Type Inequalities Involving Non-Conformable Integral Operators , 2019, Symmetry.

[25]  Congxin Wu,et al.  Semi-Continuity of complex fuzzy functions , 2012 .

[26]  O. Diekmann,et al.  Thresholds and travelling waves for the geographical spread of infection , 1978, Journal of mathematical biology.