Application of constitutive models in European codes to RC–FRC

Abstract The recent publication of codes for the design of FRC is a major step towards extending the use of the material. An in depth analysis indicates several differences between the constitutive models proposed in the existing codes. In this study, these models are compared and a numerical simulation is performed to evaluate their differences in terms of the structural behavior predicted and measured in an experimental program of RC–FRC elements. The predictions provided by the models fit satisfactorily the experimental results for elements with steel fibers and with plastic fibers.

[1]  Alexandre Monsó Varona Análisis del comportamiento del hormigón reforzado con fibras para el ensayo Barcelona y de flexotracción , 2011 .

[2]  Climent Molins,et al.  Double Punch Test to control the energy dissipation in tension of FRC (Barcelona test) , 2009 .

[3]  Liberato Ferrara,et al.  On the identification of SFRC costitutive law in uniaxial tension , 2004 .

[4]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[5]  Climent Molins,et al.  Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. , 2011 .

[6]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[7]  Giuseppe Tiberti,et al.  Concrete tunnel segments with combined traditional and fiber reinforcement: optimization of the structural behavior and design aspects , 2002 .

[8]  Bernardino Chiaia,et al.  Evaluation of crack width in FRC structures and application to tunnel linings , 2009 .

[9]  Giovanni Plizzari,et al.  Considerazioni a margine del CNR-DT 204/2006: Istruzioni per la progettazione, l’esecuzione ed il controllo di strutture di calcestruzzo fibrorinforzato , 2006 .

[10]  Filipe Laranjeira de Oliveira Design-oriented constitutive model for steel fiber reinforced concrete , 2010 .

[11]  Joaquim Figueiras,et al.  Flexural Behavior of SFRC: Testing and Modeling , 1999 .

[12]  T. Y. Lim,et al.  Bending Behavior of Steel-Fiber Concrete Beams , 1987 .

[13]  Barzin Mobasher,et al.  Flexural Design of Fiber-Reinforced Concrete , 2009 .

[14]  Peter Jones,et al.  Prediction of steel fibre reinforced concrete under flexure from an inferred fibre pull-out response , 2005 .

[15]  T. S. Lok,et al.  Tensile behaviour and moment–curvature relationship of steel fibre reinforced concrete , 1998 .

[16]  Antonio Aguado de Cea,et al.  Análisis comparativo de los modelos constitutivos del hormigón reforzado con fibras , 2010 .

[17]  Antonio Aguado,et al.  Cracking behavior of FRC slabs with traditional reinforcement , 2012 .

[18]  A. G. Kooiman,et al.  Modelling Steel Fibre Reinforced Concrete for Structural Design , 2000 .

[19]  B. Barragán,et al.  Failure and toughness of steel fiber reinforced concrete under tension and shear , 2002 .

[20]  Bibiana Luccioni,et al.  A simple approach to model SFRC , 2012 .

[21]  Joaquim A. O. Barros,et al.  Post-cracking behaviour of steel fibre reinforced concrete , 2003 .

[22]  A W Beeby,et al.  CONCISE EUROCODE FOR THE DESIGN OF CONCRETE BUILDINGS. BASED ON BSI PUBLICATION DD ENV 1992-1-1: 1992. EUROCODE 2: DESIGN OF CONCRETE STRUCTURES. PART 1: GENERAL RULES AND RULES FOR BUILDINGS , 1993 .

[23]  Albert de la Fuente,et al.  Experiences in Barcelona with the use of fibres in segmental linings , 2012 .

[24]  Lucie Vandewalle,et al.  Dispersion of the mechanical properties of FRC investigated by different bending tests , 2008 .

[25]  Simon A. Austin,et al.  Predicting the flexural load–deflection response of steel fibre reinforced concrete from strain, crack-width, fibre pull-out and distribution data , 2008 .

[26]  Fatih Altun,et al.  A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test , 2007 .

[27]  Lucie Vandewalle,et al.  Cracking behaviour of concrete beams reinforced with a combination of ordinary reinforcement and steel fibers , 2000 .

[28]  Climent Molins,et al.  Experimentación y simulación numérica de tubos de hormigón con fibras , 2011 .

[29]  Lucie Vandewalle,et al.  Fibre reinforced concrete in the new fib Model Code , 2009 .

[30]  Climent Molins,et al.  A new design method for steel fibre reinforced concrete pipes , 2012 .

[31]  V. Li,et al.  Micromechanics of crack bridging in fibre-reinforced concrete , 1993 .

[32]  Joost C. Walraven,et al.  High performance fiber reinforced concrete: progress in knowledge and design codes , 2009 .

[33]  Lucie Vandewalle,et al.  Characterization of steel fibre reinforced concrete with a sigma-epsilon relation , 2002 .

[34]  Lucie Vandewalle,et al.  Fibre reinforced concrete: new design perspectives , 2009 .

[35]  F. Wittmann,et al.  Experimental Method to Determine Extension of Fracture-Process Zone , 1990 .

[36]  Lucie Vandewalle,et al.  RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete' - sigma-epsilon-design method - Final Recommendation , 2003 .

[37]  Climent Molins i Borrell,et al.  Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test: part 1: test configuration and execution , 2011 .