Exploiting uncertainty in random sample consensus

In this work, we present a technique for robust estimation, which by explicitly incorporating the inherent uncertainty of the estimation procedure, results in a more efficient robust estimation algorithm. In addition, we build on recent work in randomized model verification, and use this to characterize the ‘non-randomness’ of a solution. The combination of these two strategies results in a robust estimation procedure that provides a significant speed-up over existing RANSAC techniques, while requiring no prior information to guide the sampling process. In particular, our algorithm requires, on average, 3–10 times fewer samples than standard RANSAC, which is in close agreement with theoretical predictions. The efficiency of the algorithm is demonstrated on a selection of geometric estimation problems.

[1]  Jiri Matas,et al.  Randomized RANSAC with T(d, d) test , 2002, BMVC.

[2]  Jiri Matas,et al.  Two-view geometry estimation unaffected by a dominant plane , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[4]  Manolis I. A. Lourakis,et al.  Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.

[5]  Kenichi Kanatani,et al.  Uncertainty modeling and model selection for geometric inference , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  C. A. HART,et al.  Manual of Photogrammetry , 1947, Nature.

[7]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[9]  Rej Chum Ond Two-view geometry estimation by random sample and consensus , 2005 .

[10]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[11]  Jiri Matas,et al.  Optimal Randomized RANSAC , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Jan-Michael Frahm,et al.  RANSAC for (Quasi-)Degenerate data (QDEGSAC) , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Marie-Odile Berger,et al.  Computing the Uncertainty of the 8 point Algorithm for Fundamental Matrix Estimation , 2008, BMVC.

[14]  Jiri Matas,et al.  Randomized RANSAC with Td, d test , 2004, Image Vis. Comput..

[15]  J. Davenport Editor , 1960 .

[16]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[17]  Andrew Zisserman,et al.  Robust detection of degenerate configurations for the fundamental matrix , 1995, Proceedings of IEEE International Conference on Computer Vision.

[18]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Ian D. Reid,et al.  A plane measuring device , 1999, Image Vis. Comput..

[20]  Jan-Michael Frahm,et al.  A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus , 2008, ECCV.

[21]  David P. Capel An Effective Bail-out Test for RANSAC Consensus Scoring , 2005, BMVC.

[22]  Robert M. Haralick,et al.  Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[23]  Richard I. Hartley,et al.  In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  M. Pollefeys,et al.  RANSAC for (Quasi-)Degenerate data (QDEGSAC) (submitted to CVPR 2006) , 2006 .