Deep embedding clustering based on contractive autoencoder

[1]  Sachin Lodha,et al.  Unsupervised Word Clustering Using Deep Features , 2016, 2016 12th IAPR Workshop on Document Analysis Systems (DAS).

[2]  Jinghua Wang,et al.  SA-Net: A deep spectral analysis network for image clustering , 2020, Neurocomputing.

[3]  Hong Yu,et al.  Multi-view clustering via multi-manifold regularized non-negative matrix factorization , 2017, Neural Networks.

[4]  Tianrui Li,et al.  Concept-Enhanced Multi-view Clustering of Document Data , 2019, 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE).

[5]  Huachun Tan,et al.  Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering , 2016, IJCAI.

[6]  En Zhu,et al.  Deep Embedded Clustering with Data Augmentation , 2018, ACML.

[7]  Cheng Deng,et al.  Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[8]  Peng Wang,et al.  Self-Taught Convolutional Neural Networks for Short Text Clustering , 2017, Neural Networks.

[9]  Zenglin Xu,et al.  Deep Density-based Image Clustering , 2018, Knowl. Based Syst..

[10]  Zenglin Xu,et al.  Adaptive local structure learning for document co-clustering , 2018, Knowl. Based Syst..

[11]  Dezhong Peng,et al.  Adversarial correlated autoencoder for unsupervised multi-view representation learning , 2019, Knowl. Based Syst..

[12]  Jing Wan,et al.  A Novel Text Clustering Approach Using Deep-Learning Vocabulary Network , 2017 .

[13]  Jiashi Feng,et al.  Deep Clustering With Sample-Assignment Invariance Prior , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[14]  Wei Yan,et al.  A novel regularized concept factorization for document clustering , 2017, Knowl. Based Syst..

[15]  Zenglin Xu,et al.  Auto-weighted multi-view clustering via deep matrix decomposition , 2020, Pattern Recognit..

[16]  Wei-Yun Yau,et al.  Deep Subspace Clustering with Sparsity Prior , 2016, IJCAI.

[17]  Cai Xu,et al.  Deep Multi-View Concept Learning , 2018, IJCAI.

[18]  Yang Li,et al.  Learning document representation via topic-enhanced LSTM model , 2019, Knowl. Based Syst..

[19]  Raquel Urtasun,et al.  Deep Spectral Clustering Learning , 2017, ICML.

[20]  Wei Wang,et al.  Deep Embedding Network for Clustering , 2014, 2014 22nd International Conference on Pattern Recognition.

[21]  Fanzhang Li,et al.  Semi-supervised concept factorization for document clustering , 2016, Inf. Sci..

[22]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[23]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[24]  Shiping Wang,et al.  Deep clustering by maximizing mutual information in variational auto-encoder , 2020, Knowl. Based Syst..

[25]  Masashi Sugiyama,et al.  Learning Discrete Representations via Information Maximizing Self-Augmented Training , 2017, ICML.

[26]  Zenglin Xu,et al.  Semi-supervised deep embedded clustering , 2019, Neurocomputing.

[27]  Sanghyun Park,et al.  ADC: Advanced document clustering using contextualized representations , 2019, Expert Syst. Appl..

[28]  Laith Mohammad Abualigah,et al.  A new feature selection method to improve the document clustering using particle swarm optimization algorithm , 2017, J. Comput. Sci..

[29]  Bo Yang,et al.  Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering , 2016, ICML.

[30]  Ngai-Man Cheung,et al.  Deep Clustering by Gaussian Mixture Variational Autoencoders With Graph Embedding , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[31]  Jianhong Ma,et al.  DocNet: A document embedding approach based on neural networks , 2018, 2018 24th International Conference on Automation and Computing (ICAC).

[32]  Hong Peng,et al.  Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning , 2020, Neurocomputing.

[33]  Bo Zhang,et al.  Discriminatively Boosted Image Clustering with Fully Convolutional Auto-Encoders , 2017, Pattern Recognit..

[34]  Wei Wang,et al.  DCSR: Deep clustering under similarity and reconstruction constraints , 2020, Neurocomputing.

[35]  Paras Dahal Learning Embedding Space for Clustering From Deep Representations , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[36]  Dhruv Batra,et al.  Joint Unsupervised Learning of Deep Representations and Image Clusters , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Wenzhong Guo,et al.  An Overview of Unsupervised Deep Feature Representation for Text Categorization , 2019, IEEE Transactions on Computational Social Systems.

[38]  Mohamed Nadif,et al.  Sparse Poisson Latent Block Model for Document Clustering , 2017, IEEE Transactions on Knowledge and Data Engineering.

[39]  Sandhya Subramani,et al.  A Novel Approach of Neural Topic Modelling for Document Clustering , 2018, 2018 IEEE Symposium Series on Computational Intelligence (SSCI).

[40]  George Trigeorgis,et al.  A Deep Matrix Factorization Method for Learning Attribute Representations , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[42]  En Zhu,et al.  Deep Clustering with Convolutional Autoencoders , 2017, ICONIP.

[43]  Enhong Chen,et al.  Learning Deep Representations for Graph Clustering , 2014, AAAI.

[44]  Jianping Yin,et al.  Improved Deep Embedded Clustering with Local Structure Preservation , 2017, IJCAI.