Gap hull estimation for rigid mechanical joints considering form deviations and multiple pairs of mating surfaces

Abstract The embodiment of mechanical joints is a demanding activity during the design of mechanism. In this context, particularly the assessment of the effects of geometrical deviations on the behaviour of the mechanical joint is of strong importance. This paper presents an approach to the gap hull estimation for mechanical joints considering form deviations. The novelty of this approach lies in the ability to analyse the behaviour of mechanical joints considering multiple pairs of mating surfaces. The application of this method to a prismatic as well as to a cylindrical joint prove the versatility of the method regarding different kinds of joints with multiple pairs of contact surfaces. Moreover, the results of the application of this approach to the tolerance analysis of a two-pin-two-hole assembly confirm the importance of considering form deviations in the tolerance analysis and in the design of mechanical joints and mechanism.

[1]  M. Bergamasco,et al.  A new screw theory method for the estimation of position accuracy in spatial parallel manipulators with revolute joint clearances , 2011 .

[2]  J. W. Wittwer,et al.  The direct linearization method applied to position error in kinematic linkages , 2004 .

[3]  Joseph K. Davidson,et al.  A Comparative Study Of Tolerance Analysis Methods , 2005, J. Comput. Inf. Sci. Eng..

[4]  L. Laperriere,et al.  Jacobian-based modeling of dispersions affecting pre-defined functional requirements of mechanical assemblies , 1999, Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP'99) (Cat. No.99TH8470).

[5]  Yimin Zhang,et al.  Robust tolerance design for function generation mechanisms with joint clearances , 2010 .

[6]  Jorge Ambrósio,et al.  Revolute joints with clearance in multibody systems , 2004 .

[7]  Serge Samper,et al.  Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases , 2007 .

[8]  Bernard Anselmetti Generation of functional tolerancing based on positioning features , 2006, Comput. Aided Des..

[9]  Massimiliano Marziale,et al.  To model bolted parts for tolerance analysis using variational model , 2015 .

[10]  Wilma Polini,et al.  Geometric Tolerance Analysis , 2011 .

[11]  Sandro Wartzack,et al.  A discrete geometry approach for tolerance analysis of mechanism , 2014 .

[12]  David A. Boas,et al.  Tetrahedral mesh generation from volumetric binary and grayscale images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[13]  Hoai-Nam Le,et al.  Experimental and Theoretical Investigations of Mechanical Joints With Form Defects , 2014, J. Comput. Inf. Sci. Eng..

[14]  David P. Dobkin,et al.  Applied Computational Geometry: Towards Robust Solutions of Basic Problems , 1990, J. Comput. Syst. Sci..

[15]  Jean-Yves Dantan,et al.  Geometrical product specifications - model for product life cycle , 2008, Comput. Aided Des..

[16]  O. W. Salomons,et al.  A computer aided tolerancing tool I: tolerance specification , 1996 .

[17]  R. Arrieux,et al.  Clearance Space in Volumic Dimensioning , 1992 .

[18]  Nickolas S. Sapidis,et al.  Drawing curves onto a cloud of points for point-based modelling , 2005, Comput. Aided Des..

[19]  Sandro Wartzack,et al.  Novel approaches for the assembly simulation of rigid Skin Model Shapes in tolerance analysis , 2018, Comput. Aided Des..

[20]  Jean-Pierre Nadeau,et al.  Variational tolerancing analysis taking thermomechanical strains into account: Application to a high pressure turbine , 2014 .

[21]  Sandro Wartzack,et al.  Challenges of Geometrical Variations Modelling in Virtual Product Realization , 2017 .

[22]  Spencer P. Magleby,et al.  Including Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies , 1996 .

[23]  Sandro Wartzack,et al.  Approaches for the assembly simulation of skin model shapes , 2015, Comput. Aided Des..

[24]  Sandro Wartzack,et al.  Skin Model Shapes: A new paradigm shift for geometric variations modelling in mechanical engineering , 2014, Comput. Aided Des..

[25]  Vincenzo Parenti-Castelli,et al.  Clearance influence analysis on mechanisms , 2005 .

[26]  Qiang Tian,et al.  A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints , 2018 .

[27]  Nicolas Gayton,et al.  Statistical tolerance analysis of over-constrained mechanisms with gaps using system reliability methods , 2013, Comput. Aided Des..

[28]  Luc Mathieu,et al.  Evaluation des performances des logiciels d'aide au tolérancement , 2001 .

[29]  Chaowang Bo,et al.  A comparison of tolerance analysis models for assembly , 2013 .

[30]  Sandro Wartzack,et al.  Evaluation of geometric tolerances and generation of variational part representatives for tolerance analysis , 2015 .

[31]  Bernard Anselmetti,et al.  Thermal dilatation in functional tolerancing , 2011 .

[32]  Joseph K. Davidson,et al.  Navigating the Tolerance Analysis Maze , 2007 .

[33]  Daniel E. Whitney,et al.  Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies , 1994 .

[34]  Lazhar Homri,et al.  Tolerance analysis - Form defects modeling and simulation by modal decomposition and optimization , 2017, Comput. Aided Des..

[35]  Ming-June Tsai,et al.  Kinematic sensitivity analysis of linkage with joint clearance based on transmission quality , 2004 .

[36]  Pierre-Antoine Adragna,et al.  Modeling of 2D and 3D Assemblies Taking Into Account Form Errors of Plane Surfaces , 2009, J. Comput. Inf. Sci. Eng..

[37]  W. Ghie,et al.  Statistical and Deterministic Tolerance Analysis and Synthesis Using a Unified Jacobian-Torsor Model , 2002 .

[38]  William K. Veitschegger,et al.  Robot accuracy analysis based on kinematics , 1986, IEEE J. Robotics Autom..

[39]  Hua Chen,et al.  A comprehensive study of three dimensional tolerance analysis methods , 2014, Comput. Aided Des..

[40]  Umberto Prisco,et al.  Overview of current CAT systems , 2002, Integr. Comput. Aided Eng..

[41]  Jianmin Zhu,et al.  The effects of joint clearance on position and orientation deviation of linkages and manipulators , 2000 .

[42]  Denis Teissandier,et al.  Operations on polytopes: application to tolerance analysis , 2011, ArXiv.

[43]  Masatomo Inui,et al.  Analysis of position uncertainties of parts in an assembly using configuration space in octree representation , 1995, SMA '95.

[44]  Sandro Wartzack,et al.  Motion Tolerancing Based on Skin Model Shapes by Form Deviation Parametrization and Meta-Modelling , 2017 .

[45]  Nicolas Gayton,et al.  Mathematical issues in mechanical tolerance analysis , 2012 .

[46]  Y. S. Hong,et al.  A comprehensive review of tolerancing research , 2002 .

[47]  H.J.J. Kals,et al.  Current status of CAT systems , 1998 .

[48]  Arend L. Schwab,et al.  A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems , 2002 .

[49]  Rikard Söderberg,et al.  Virtual Geometry Assurance Process and Toolbox , 2016 .

[50]  Polini Wilma,et al.  Manufacturing Signature for Tolerance Analysis , 2015 .

[51]  Adam Herout,et al.  Yet Faster Ray-Triangle Intersection (Using SSE4) , 2010, IEEE Transactions on Visualization and Computer Graphics.

[52]  Wilma Polini,et al.  Manufacturing Signature for Tolerance Analysis , 2015, J. Comput. Inf. Sci. Eng..

[53]  Aristides A. G. Requicha,et al.  Toward a Theory of Geometric Tolerancing , 1983 .

[54]  X. Yan,et al.  Toward an Automatic Generation of Part Models with Form Error , 2016 .

[55]  Gaurav Ameta,et al.  Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS , 2011, J. Comput. Inf. Sci. Eng..

[56]  A. Akay,et al.  Dynamic response of a revolute joint with clearance , 1996 .

[57]  Sandro Wartzack,et al.  Status and Prospects of Skin Model Shapes for Geometric Variations Management , 2016 .