Splicing Segregation: The Minor Spliceosome Acts outside the Nucleus and Controls Cell Proliferation

[1]  G. Ast,et al.  Different levels of alternative splicing among eukaryotes , 2006, Nucleic acids research.

[2]  Tyler S. Alioto,et al.  U12DB: a database of orthologous U12-type spliceosomal introns , 2006, Nucleic Acids Res..

[3]  A. Russell,et al.  An early evolutionary origin for the minor spliceosome , 2006, Nature.

[4]  M. Frilander,et al.  The abundance of the spliceosomal snRNPs is not limiting the splicing of U12-type introns. , 2006, RNA.

[5]  Lindy E. Barrett,et al.  RNA splicing capability of live neuronal dendrites. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  K. Swoboda,et al.  Escaping the Nuclear Confines: Signal-Dependent Pre-mRNA Splicing in Anucleate Platelets , 2005, Cell.

[7]  C. Will,et al.  Splicing of a rare class of introns by the U12-dependent spliceosome , 2005, Biological chemistry.

[8]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[9]  D. A. Stein,et al.  Arginine-rich peptide conjugation to morpholino oligomers: effects on antisense activity and specificity. , 2005, Bioconjugate chemistry.

[10]  E. Conti,et al.  Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. , 2005, Current opinion in cell biology.

[11]  N. Matter,et al.  Targeted ‘knockdown’ of spliceosome function in mammalian cells , 2005, Nucleic acids research.

[12]  Henning Urlaub,et al.  The human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. , 2004, RNA.

[13]  P. Iversen,et al.  Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. , 2004, Bioconjugate chemistry.

[14]  Abhijit A. Patel,et al.  Splicing double: insights from the second spliceosome , 2003, Nature Reviews Molecular Cell Biology.

[15]  R. Durbin,et al.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics , 2003, PLoS biology.

[16]  Melissa S Jurica,et al.  Pre-mRNA splicing: awash in a sea of proteins. , 2003, Molecular cell.

[17]  Michael Lynch,et al.  The evolution of spliceosomal introns. , 2002, Current opinion in genetics & development.

[18]  C. Shin,et al.  The SR Protein SRp38 Represses Splicing in M Phase Cells , 2002, Cell.

[19]  Abhijit A. Patel,et al.  The splicing of U12‐type introns can be a rate‐limiting step in gene expression , 2002, The EMBO journal.

[20]  Bosiljka Tasic,et al.  Alternative pre-mRNA splicing and proteome expansion in metazoans , 2002, Nature.

[21]  T. Maniatis,et al.  An extensive network of coupling among gene expression machines , 2002, Nature.

[22]  J. Steitz,et al.  The divergent U12-type spliceosome is required for pre-mRNA splicing and is essential for development in Drosophila. , 2002, Molecular cell.

[23]  R. Durbin,et al.  A computational scan for U12-dependent introns in the human genome sequence. , 2001, Nucleic acids research.

[24]  F. Müller,et al.  TBP is not universally required for zygotic RNA polymerase II transcription in zebrafish , 2001, Current Biology.

[25]  K. Wilson,et al.  C. elegans nuclear envelope proteins emerin, MAN1, lamin, and nucleoporins reveal unique timing of nuclear envelope breakdown during mitosis. , 2000, Molecular biology of the cell.

[26]  J. Summerton Morpholino antisense oligomers: the case for an RNase H-independent structural type. , 1999, Biochimica et biophysica acta.

[27]  R. Mayer,et al.  The nuclear export signal-dependent localization of oligonucleopeptides enhances the inhibition of the protein expression from a gene transcribed in cytosol , 1999, Nucleic Acids Res..

[28]  C. Will,et al.  Identification of both shared and distinct proteins in the major and minor spliceosomes. , 1999, Science.

[29]  P. Sharp,et al.  Evolutionary fates and origins of U12-type introns. , 1998, Molecular cell.

[30]  C. Spencer,et al.  Mitotic repression of RNA polymerase II transcription is accompanied by release of transcription elongation complexes , 1997, Molecular and Cellular Biology.

[31]  C. Nüsslein-Volhard,et al.  The zebrafish early arrest mutants. , 1996, Development.

[32]  Woan-Yuh Tarn,et al.  Highly Diverged U4 and U6 Small Nuclear RNAs Required for Splicing Rare AT-AC Introns , 1996, Science.

[33]  R. Padgett,et al.  Requirement of U12 snRNA for in Vivo Splicing of a Minor Class of Eukaryotic Nuclear Pre-mRNA Introns , 1996, Science.

[34]  Woan-Yuh Tarn,et al.  A Novel Spliceosome Containing U11, U12, and U5 snRNPs Excises a Minor Class (AT–AC) Intron In Vitro , 1996, Cell.

[35]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[36]  R. Padgett,et al.  Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. , 1994, Journal of molecular biology.

[37]  D. Spector,et al.  U1 and U2 small nuclear RNAs are present in nuclear speckles , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Pepperkok,et al.  Mammalian nuclei contain foci which are highly enriched in components of the pre‐mRNA splicing machinery. , 1991, The EMBO journal.

[39]  A. Weiner,et al.  A compensatory base change in human U2 snRNA can suppress a branch site mutation. , 1989, Genes & development.

[40]  J. Steitz,et al.  Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Wigard P Kloosterman,et al.  In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes , 2005, Nature Methods.

[42]  J. Ott,et al.  Estimating rates of alternative splicing in mammals and invertebrates , 2004, Nature Genetics.