Estimating linear response statistics using orthogonal polynomials: An RKHS formulation.

We study the problem of estimating linear response statistics under external perturbations using time series of unperturbed dynamics. Based on the fluctuation-dissipation theory, this problem is reformulated as an unsupervised learning task of estimating a density function. We consider a nonparametric density estimator formulated by the kernel embedding of distributions with "Mercer-type" kernels, constructed based on the classical orthogonal polynomials defined on non-compact domains. While the resulting representation is analogous to Polynomial Chaos Expansion (PCE), the connection to the reproducing kernel Hilbert space (RKHS) theory allows one to establish the uniform convergence of the estimator and to systematically address a practical question of identifying the PCE basis for a consistent estimation. We also provide practical conditions for the well-posedness of not only the estimator but also of the underlying response statistics. Finally, we provide a statistical error bound for the density estimation that accounts for the Monte-Carlo averaging over non-i.i.d time series and the biases due to a finite basis truncation. This error bound provides a means to understand the feasibility as well as limitation of the kernel embedding with Mercer-type kernels. Numerically, we verify the effectiveness of the estimator on two stochastic dynamics with known, yet, non-trivial equilibrium densities.

[1]  Kenji Fukumizu,et al.  Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..

[2]  Jenq-Neng Hwang,et al.  Nonparametric multivariate density estimation: a comparative study , 1994, IEEE Trans. Signal Process..

[3]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[4]  L. Wasserman All of Nonparametric Statistics , 2005 .

[5]  Quanquan Gu,et al.  Generalization Error Bounds of Gradient Descent for Learning Over-Parameterized Deep ReLU Networks , 2019, AAAI.

[6]  Andrew J. Majda,et al.  Information theory and stochastics for multiscale nonlinear systems , 2005 .

[7]  Ingo Steinwart,et al.  On the Influence of the Kernel on the Consistency of Support Vector Machines , 2002, J. Mach. Learn. Res..

[8]  B. Leimkuhler,et al.  The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.

[9]  He Zhang,et al.  A Parameter Estimation Method Using Linear Response Statistics , 2016 .

[10]  Doron S. Lubinsky,et al.  Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[11]  Jonathan C. Mattingly,et al.  A weak trapezoidal method for a class of stochastic differential equations , 2009, 0906.3475.

[12]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[13]  Andrew J. Majda,et al.  Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities , 2013 .

[14]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[15]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[16]  Hugo Larochelle,et al.  Neural Autoregressive Distribution Estimation , 2016, J. Mach. Learn. Res..

[17]  G. Pavliotis Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .

[18]  A. O'Neill,et al.  Atmospheric multiple equilibria and non‐Gaussian behaviour in model simulations , 2001 .

[19]  L. Carlitz The product of several Hermite or Laguerre polynomials , 1962 .

[20]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[21]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[22]  Wing Hung Wong,et al.  Convergence rates of a partition based Bayesian multivariate density estimation method , 2017, NIPS.

[23]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[24]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[25]  E. F. Schuster Estimation of a Probability Density Function and Its Derivatives , 1969 .

[26]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[27]  C. Leith Climate Response and Fluctuation Dissipation , 1975 .

[28]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[29]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[30]  Xiantao Li,et al.  The strong convergence of operator-splitting methods for the Langevin dynamics model , 2017, 1706.04237.

[31]  John Harlim,et al.  Correcting Biased Observation Model Error in Data Assimilation , 2016, 1611.05405.

[32]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[33]  Gary P. Morriss,et al.  Nonlinear-response theory for steady planar Couette flow , 1984 .

[34]  Matthias Hein,et al.  Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace–Beltrami Operator , 2018, Found. Comput. Math..

[35]  M. Toda,et al.  In: Statistical physics II , 1985 .

[36]  Christian Maes,et al.  Fluctuations and response of nonequilibrium states. , 2009, Physical review letters.

[37]  Matthias Morzfeld,et al.  Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems , 2014, J. Comput. Phys..

[38]  F. G. Mehler Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung. , 1866 .

[39]  Hui Jiang,et al.  Multivariate Density Estimation by Bayesian Sequential Partitioning , 2013 .

[40]  Aapo Hyvärinen,et al.  Density Estimation in Infinite Dimensional Exponential Families , 2013, J. Mach. Learn. Res..

[41]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[42]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[43]  Y. Davydov Convergence of Distributions Generated by Stationary Stochastic Processes , 1968 .

[44]  Shixiao W. Jiang,et al.  Parameter Estimation with Data-Driven Nonparametric Likelihood Functions , 2018, Entropy.

[45]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[46]  Ahmad El Soufi,et al.  Eigenvalues of the Laplacian on a compact manifold with density , 2013, 1310.1490.

[47]  Ingo Steinwart,et al.  Fast learning from α-mixing observations , 2014, J. Multivar. Anal..

[48]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[49]  G. N. Watson Notes on Generating Functions of Polynomials: (1) Laguerre Polynomials , 1933 .

[50]  W. A. Al-Salam Operational representations for the Laguerre and other polynomials , 1964 .