The role of photonics in energy

Abstract. In celebration of the 2015 International Year of Light, we highlight major breakthroughs in photonics for energy conversion and conservation. The section on energy conversion discusses the role of light in solar light harvesting for electrical and thermal power generation; chemical energy conversion and fuel generation; as well as photonic sensors for energy applications. The section on energy conservation focuses on solid-state lighting, flat-panel displays, and optical communications and interconnects.

[1]  Kao-Chih Syao,et al.  Enhanced light outcoupling in a thin film by texturing meshed surfaces , 2007 .

[2]  Shuji Nakamura,et al.  Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting , 2011 .

[3]  Jie Zhang,et al.  Efficient Solution‐Processed Small‐Molecule Solar Cells with Inverted Structure , 2013, Advanced materials.

[4]  Lei Ding,et al.  A novel intermediate connector with improved charge generation and separation for large-area tandem white organic lighting devices , 2014 .

[5]  James S. Harris,et al.  Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy , 2007 .

[6]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[7]  Nelson Tansu,et al.  Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. , 2011, Optics express.

[8]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[9]  I-Hsiang Tseng,et al.  Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts , 2002 .

[10]  Nelson Tansu,et al.  Design analysis of 1550-nm GaAsSb-(In)GaAsN type-II quantum-well laser active regions , 2003 .

[11]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[12]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[13]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[14]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[15]  Gavin Conibeer,et al.  Silicon quantum dot/crystalline silicon solar cells , 2008, Nanotechnology.

[16]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[17]  B. Barwick,et al.  Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field , 2015, Nature Communications.

[18]  K. Yoon,et al.  An 8.2% efficient solution-processed CuInSe2 solar cell based on multiphase CuInSe2 nanoparticles , 2012 .

[19]  Shi You,et al.  Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire , 2011 .

[20]  Zakya H. Kafafi,et al.  Transparent electrodes based on two-dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics , 2014 .

[21]  D. Leung,et al.  Hydrogen production over titania-based photocatalysts. , 2010, ChemSusChem.

[22]  Jing Zhang,et al.  Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition , 2010 .

[23]  Soon Moon Jeong,et al.  Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles , 2010 .

[24]  Jingxia Wang,et al.  Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal , 2010 .

[25]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[26]  T. Trupke,et al.  Improving solar cell efficiencies by the up-conversion of sub-bandgap light , 2002 .

[27]  Shihe Yang,et al.  Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting , 2014 .

[28]  K. Domen,et al.  Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light , 2007 .

[29]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[30]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[31]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[32]  Detlef W. Bahnemann,et al.  Photochemical splitting of water for hydrogen production by photocatalysis: A review , 2014 .

[33]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[34]  Ashok V. Krishnamoorthy,et al.  A Monolithic 25-Gb/s Transceiver With Photonic Ring Modulators and Ge Detectors in a 130-nm CMOS SOI Process , 2012, IEEE Journal of Solid-State Circuits.

[35]  Peng Wang,et al.  High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. , 2010, ACS nano.

[36]  Cefe López,et al.  Materials Aspects of Photonic Crystals , 2003 .

[37]  Yongsheng Chen,et al.  A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. , 2015, Journal of the American Chemical Society.

[38]  Jing Zhang,et al.  First-Principle Electronic Properties of Dilute-As GaNAs Alloy for Visible Light Emitters , 2013, Journal of Display Technology.

[39]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[40]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[41]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[42]  Shuxin Ouyang,et al.  Recent advances in TiO 2 -based photocatalysis , 2014 .

[43]  Satoshi Yasuda,et al.  A black body absorber from vertically aligned single-walled carbon nanotubes , 2009, Proceedings of the National Academy of Sciences.

[44]  Ming Lun Tseng,et al.  Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. , 2012, ACS nano.

[45]  Kristiaan Neyts,et al.  Exceptionally efficient organic light emitting devices using high refractive index substrates. , 2009, Optics express.

[46]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[47]  Robert P. H. Chang,et al.  Polymer solar cells with enhanced fill factors , 2013, Nature Photonics.

[48]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[49]  P. Bhattacharya,et al.  InGaN/GaN Quantum Dot Red $(\lambda=630~{\rm nm})$ Laser , 2013, IEEE Journal of Quantum Electronics.

[50]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[51]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[52]  Stephen R. Forrest,et al.  EXCITONIC SINGLET-TRIPLET RATIO IN A SEMICONDUCTING ORGANIC THIN FILM , 1999 .

[53]  Ronald A. Arif,et al.  Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes , 2007 .

[54]  A. Aberle Thin-film solar cells , 2009 .

[55]  Tor K. Kragas,et al.  The Optic Oil Field: Deployment and Application of Permanent In-well Fiber Optic Sensing Systems for Production and Reservoir Monitoring , 2001 .

[56]  Harry A Atwater,et al.  Solar Cell light trapping beyond the ray optic limit. , 2012, Nano letters.

[57]  Shinichiro Kawabata,et al.  Improved growth rates and purity of basic ammonothermal GaN , 2014 .

[58]  J. Lakowicz Plasmonics in Biology and Plasmon-Controlled Fluorescence , 2006, Plasmonics.

[59]  H. García,et al.  Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. , 2011, Journal of the American Chemical Society.

[60]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[61]  T. Mukai,et al.  Monolithic Polychromatic Light-Emitting Diodes Based on InGaN Microfacet Quantum Wells toward Tailor-Made Solid-State Lighting , 2008 .

[62]  Ryu Abe,et al.  Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation , 2010 .

[63]  R. Street Luminescence and recombination in hydrogenated amorphous silicon , 1981 .

[64]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[65]  N. Melosh,et al.  Plasmonic energy collection through hot carrier extraction. , 2011, Nano letters.

[66]  J. Baumberg,et al.  Plasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting , 2014, Small.

[67]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[68]  Jing Zhang,et al.  Efficiency-Droop Suppression by Using Large-Bandgap AlGaInN Thin Barrier Layers in InGaN Quantum-Well Light-Emitting Diodes , 2013, IEEE Photonics Journal.

[69]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[70]  Stephen R. Forrest,et al.  Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays , 2002 .

[71]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[72]  G. Concentratin CONCENTRATING SOLAR POWER , 2007 .

[73]  P. Lalanne,et al.  A microscopic view of the electromagnetic properties of sub-λ metallic surfaces , 2009 .

[74]  Xiujian Zhao,et al.  Facile Fabrication of 3D-Ordered Macroporous Nanocrystalline Iron Oxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity , 2010 .

[75]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[76]  Alan J. Heeger,et al.  Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells , 2013, Scientific Reports.

[77]  Yong Zhou,et al.  Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation , 2012 .

[78]  João Mendes-Lopes,et al.  Recent trends in concentrated photovoltaics concentrators’ architecture , 2014 .

[79]  Tyler B Fleetham,et al.  Recent advances in white organic light-emitting diodes employing a single-emissive material , 2014 .

[80]  Zheng-Hong Lu,et al.  Design principles for highly efficient organic light-emitting diodes , 2014 .

[81]  Tonio Buonassisi,et al.  Ten-percent solar-to-fuel conversion with nonprecious materials , 2014, Proceedings of the National Academy of Sciences.

[82]  Stuart A. Boden,et al.  Optimization of moth‐eye antireflection schemes for silicon solar cells , 2010 .

[83]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[84]  L. Mawst,et al.  Properties of ‘bulk' GaAsSbN/GaAs for multi-junction solar cell application: Reduction of carbon background concentration , 2014 .

[85]  Yang Yang,et al.  An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.

[86]  Qiaoqiang Gan,et al.  Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[87]  Zongfu Yu,et al.  Fundamental Limit of Nanophotonic Light-trapping in Solar Cells , 2010 .

[88]  M. C. Abdulrida,et al.  Influence of hydrogen on the performance of magnetron‐sputtered amorphous hydrogenated silicon field‐effect transistors , 1983 .

[89]  Visible Light-Emitting Diodes - The Formative Years , 2008 .

[90]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[91]  Linlin Yang,et al.  New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[92]  Peter A. Hobson,et al.  Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes , 2002 .

[93]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[94]  T. Mallouk,et al.  Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas , 2002 .

[95]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[96]  T. Mallouk,et al.  Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. , 2005, The journal of physical chemistry. B.

[97]  Peng Wang,et al.  Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks , 2010 .

[98]  R. F. Karlicek,et al.  Toward Smart and Ultra‐efficient Solid‐State Lighting , 2014 .

[99]  S. Nutt,et al.  InGaN/GaN multiple quantum wells grown on nonpolar facets of vertical GaN nanorod arrays. , 2012, Nano letters.

[100]  Renata Solarska,et al.  Low-temperature roll-to-roll coating procedure of dye-sensitized solar cell photoelectrodes on flexible polymer-based substrates , 2011 .

[101]  Nick E. Powell,et al.  An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[102]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[103]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[104]  Nelson Tansu,et al.  High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum-well lasers by metalorganic chemical vapor deposition , 2003 .

[105]  Ning Zhang,et al.  Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light , 2011 .

[106]  Lei Jia,et al.  Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering. , 2008, Applied optics.

[107]  M. Symko-Davies,et al.  Multijunction Photovoltaic Technologies for High-Performance Concentrators , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[108]  Nelson Tansu,et al.  Influence of growth temperature and V/III ratio on the optical characteristics of narrow band gap (0.77 eV) InN grown on GaN/sapphire using pulsed MOVPE , 2008 .

[109]  Ivan Celanovic,et al.  Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals , 2014, Advanced materials.

[110]  S. Luryi,et al.  Quaternary InGaAsSb Thermophotovoltaic Diodes , 2006, IEEE Transactions on Electron Devices.

[111]  Qixin Guo,et al.  Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis , 2010, Advanced materials.

[112]  D. L. King,et al.  Analysis of factors influencing the annual energy production of photovoltaic systems , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[113]  L. Mawst,et al.  Impact of growth temperature and substrate orientation on dilute-nitride-antimonide materials grown by MOVPE for multi-junction solar cell application , 2014 .

[114]  James S. Harris,et al.  Recombination, gain, band structure, efficiency, and reliability of 1.5-μm GaInNAsSb/GaAs lasers , 2005 .

[115]  Michele Pinelli,et al.  Overview and Status of Thermophotovoltaic Systems , 2014 .

[116]  J. Pankove,et al.  GaN blue light-emitting diodes , 1972 .

[117]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[118]  Robert F. Davis,et al.  Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy , 1997 .

[119]  M.H. Crawford,et al.  LEDs for Solid-State Lighting: Performance Challenges and Recent Advances , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[120]  Katsutoshi Nagai,et al.  Multilayer White Light-Emitting Organic Electroluminescent Device , 1995, Science.

[121]  Donal D. C. Bradley,et al.  Angular Dependence of the Emission from a Conjugated Polymer Light‐Emitting Diode: Implications for efficiency calculations , 1994 .

[122]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[123]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[124]  Sridhar Rajaram,et al.  Effect of Addition of a Diblock Copolymer on Blend Morphology and Performance of Poly(3-hexylthiophene):Perylene Diimide Solar Cells , 2009 .

[125]  Luping Yu,et al.  The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. , 2013, Nano letters.

[126]  Chia-Yen Lee,et al.  Sun Tracking Systems: A Review , 2009, Sensors.

[127]  R S Tucker,et al.  Green Optical Communications—Part II: Energy Limitations in Networks , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[128]  Carey,et al.  Compositional dependence of the luminescence of In0.49(AlyGa1-y)0.51P alloys near the direct-indirect band-gap crossover. , 1996, Physical review. B, Condensed matter.

[129]  F. Rauscher,et al.  Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments , 2012 .

[130]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[131]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[132]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[133]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[134]  S. LeBoeuf,et al.  Templated wide band-gap nanostructures , 2004 .

[135]  Increased OLED radiative efficiency using a directive optical antenna. , 2010, Optics express.

[136]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[137]  A. J. Frank,et al.  Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. , 2003, Journal of the American Chemical Society.

[138]  Stephen R. Forrest,et al.  Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids , 2008 .

[139]  R S Tucker,et al.  Green Optical Communications—Part I: Energy Limitations in Transport , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[140]  Ifor D. W. Samuel,et al.  Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode , 2001 .

[141]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[142]  H. Kwok,et al.  Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates. , 2010, Optics express.

[143]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[144]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[145]  Yongsheng Chen,et al.  Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells. , 2012, Journal of the American Chemical Society.

[146]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[147]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[148]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[149]  Flavio Santos Freitas,et al.  Incorporation of nanocrystals with different dimensionalities in hybrid TiO2/P3HT solar cells , 2015 .

[150]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[151]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[152]  J. Pei,et al.  A Non‐Fullerene Small Molecule as Efficient Electron Acceptor in Organic Bulk Heterojunction Solar Cells , 2012, Advanced materials.

[153]  Hannes Jónsson,et al.  Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. , 2012, Physical chemistry chemical physics : PCCP.

[154]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[155]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[156]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[157]  W. Choy,et al.  Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode , 2013 .

[158]  M. Wegener,et al.  Periodic nanostructures for photonics , 2007 .

[159]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[160]  Lukas Schmidt-Mende,et al.  Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors , 2013 .

[161]  Y. Do,et al.  Enhanced Light Extraction from Organic Light‐Emitting Diodes with 2D SiO2/SiNx Photonic Crystals , 2003 .

[162]  Mool C. Gupta,et al.  Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces. , 2014, Optics letters.

[163]  Willem L. Vos,et al.  LARGE DISPERSIVE EFFECTS NEAR THE BAND EDGES OF PHOTONIC CRYSTALS , 1999 .

[164]  Rommel Noufi,et al.  Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells , 2003 .

[165]  Ramon U. Martinelli,et al.  Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves , 2002 .

[166]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[167]  Yunjie Yan,et al.  Synthesis of Large‐Area Silicon Nanowire Arrays via Self‐Assembling Nanoelectrochemistry , 2002 .

[168]  Yu Cao,et al.  GaAs nanowire array solar cells with axial p-i-n junctions. , 2014, Nano letters.

[169]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[170]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[171]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[172]  A. Stein,et al.  Design and Functionality of Colloidal‐Crystal‐Templated Materials—Chemical Applications of Inverse Opals , 2013 .

[173]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[174]  A. Corma,et al.  Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids , 2012 .

[175]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[176]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[177]  A. Sayigh Solar Energy Engineering , 1977 .

[178]  Christopher E. Petoukhoff,et al.  Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review , 2015 .

[179]  Jenny Nelson,et al.  Quantum well solar cells , 1997 .

[180]  John L. Hall,et al.  Nobel Prize for Physics , 1937, Nature.

[181]  M. Reed,et al.  Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells , 2013 .

[182]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[183]  R. Stroud,et al.  Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels. , 2013, Nanoscale.

[184]  H. Yoneyama,et al.  Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals , 1995 .

[185]  Harry A. Atwater,et al.  Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells , 2014 .

[186]  Walter J. Riker A Review of J , 2010 .

[187]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[188]  Stephen J. Mihailov,et al.  Fiber Bragg Grating Sensors for Harsh Environments , 2012, Sensors.

[190]  Selenium and the Photophone , 1880, Nature.

[191]  Recent advances in TiO 2 -based photocatalysis , 2014 .

[192]  Hongping Zhao,et al.  Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes , 2013, Journal of Display Technology.

[193]  D. Ginley,et al.  The Effect of Nanoparticle Shape on the Photocarrier Dynamics and Photovoltaic Device Performance of Poly(3‐hexylthiophene):CdSe Nanoparticle Bulk Heterojunction Solar Cells , 2010 .

[194]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[195]  David Schlipf,et al.  Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine , 2013 .

[196]  Yang Xu,et al.  Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. , 2014, ACS nano.

[197]  A. Nogueira,et al.  Hybrid silicon/P3HT solar cells based on an interfacial modification with a molecular thiophene layer , 2014 .

[198]  Jung-Yong Lee,et al.  Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. , 2010, ACS nano.

[199]  Yu-Bin Chen,et al.  Microscale radiation in thermophotovoltaic devices—A review , 2007 .

[200]  B. Ohtani,et al.  Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation , 2010 .

[201]  Joop Schoonman,et al.  Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. , 2005, Nano letters.

[202]  H. Ehrenreich,et al.  Optical Properties of Semiconductors , 1963 .

[203]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[204]  Cole Boulevard,et al.  Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts , 2003 .

[205]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[206]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[207]  W. V. Sark,et al.  Enhancing solar cell efficiency by using spectral converters , 2005 .

[208]  P. Sonar,et al.  Electron-accepting conjugated materials based on 2-vinyl-4,5-dicyanoimidazoles for application in organic electronics. , 2009, The Journal of organic chemistry.

[209]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[210]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[211]  C. B. Nielsen,et al.  A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. , 2015, Journal of the American Chemical Society.

[212]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[213]  Zakya H. Kafafi,et al.  Organic Photovoltaics: Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier (Adv. Mater. 17/2013) , 2013 .

[214]  J. Maxwell VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[215]  Double embedded photonic crystals for extraction of guided light in light-emitting diodes , 2012 .

[216]  A. Méndez Overview of Applications of Fiber Optic Sensors in the Oil Industry , 2014 .

[217]  Ikerne Etxebarria,et al.  Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review , 2015 .

[218]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[219]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[220]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[221]  T. Kajino,et al.  Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. , 2010, Angewandte Chemie.

[222]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[223]  Y. Ling,et al.  Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH , 2012 .

[224]  Jarnuzi Gunlazuardi,et al.  Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method , 2005 .

[225]  Y. X. Yeng,et al.  Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters , 2014 .

[226]  Anders Steen-Nilsen Dynge,et al.  Optical modelling for photovoltaic panels , 2013 .

[227]  H. J. Round A Note on Carborundum , 1991 .

[228]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[229]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[230]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[231]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[232]  Di Zhang,et al.  Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. , 2011, Physical chemistry chemical physics : PCCP.

[233]  N. Fuke,et al.  Engineered CuInSexS2-x Quantum Dots for Sensitized Solar Cells. , 2013, The journal of physical chemistry letters.

[234]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[235]  M. Kovalenko,et al.  5.2% efficient PbS nanocrystal Schottky solar cells , 2013 .

[236]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[237]  Ifor D. W. Samuel,et al.  Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes , 2006 .

[238]  T. S. Tan,et al.  High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency , 1999 .

[239]  Ahmad R. Kirmani,et al.  The donor-supply electrode enhances performance in colloidal quantum dot solar cells. , 2013, ACS nano.

[240]  Peter Lund,et al.  Review of materials and manufacturing options for large area flexible dye solar cells , 2011 .

[241]  Paul L. Burn,et al.  A Small Molecule Non‐fullerene Electron Acceptor for Organic Solar Cells , 2011 .

[242]  S. Pillai,et al.  New Insights into the Mechanism of Visible Light Photocatalysis. , 2014, The journal of physical chemistry letters.

[243]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[244]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[245]  Paul Sharps,et al.  Solar array trades between very high-efficiency multi-junction and Si space solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[246]  Yik-Khoon Ee,et al.  Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[247]  Yik-Khoon Ee,et al.  III-Nitride Photonics , 2010, IEEE Photonics Journal.

[248]  Minwoo Nam,et al.  Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer , 2014 .

[249]  Antonio Gagliano,et al.  Intelligent sun-tracking system based on multiple photodiode sensors for maximisation of photovoltaic energy production , 2013, Math. Comput. Simul..

[250]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[251]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[252]  Weng W. Chow,et al.  Internal efficiency of InGaN light-emitting diodes: Beyond a quasiequilibrium model , 2010 .

[253]  D. Hall,et al.  Thermodynamic limit to light trapping in thin planar structures , 1997 .

[254]  Hongxing Yang,et al.  Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems , 2013 .

[255]  A. Scherer,et al.  Surface plasmon enhanced light-emitting diode , 2000, IEEE Journal of Quantum Electronics.

[256]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[257]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[258]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[259]  Jian Li,et al.  Transparent electrodes for organic optoelectronic devices: a review , 2014 .

[260]  Yong Zhou,et al.  Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects , 2014, Advanced materials.

[261]  S. Nakamura,et al.  Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes , 1996 .

[262]  J. G. Fleming,et al.  All-metallic three-dimensional photonic crystals with a large infrared bandgap , 2002, Nature.

[263]  Jonathan J. Wierer,et al.  III -nitride photonic-crystal light-emitting diodes with high extraction efficiency , 2009 .

[264]  C. McNeill,et al.  Efficient Polythiophene/Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects , 2008 .

[265]  Minglong Zhang,et al.  Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook , 2013 .

[266]  K. Delaney,et al.  Auger recombination rates in nitrides from first principles , 2009, 0904.3559.

[267]  P. Douglas Yoder,et al.  Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes , 2010 .

[268]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[269]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[270]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[271]  Jerry R. Meyer,et al.  InP-based dilute-nitride mid-infrared type-II W quantum-well lasers , 2004 .

[272]  Rolf W. Martin,et al.  OPTICAL PROPERTIES OF SEMICONDUCTORS , 2000 .

[273]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[274]  Sarah Kurtz,et al.  Multijunction solar cells for conversion of concentrated sunlight to electricity. , 2010, Optics express.

[275]  Yik-Khoon Ee,et al.  Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire , 2010 .

[276]  J. Pankove,et al.  Hydrogenated amorphous silicon—a solar cell material☆ , 1977 .

[277]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[278]  Beibei Zeng,et al.  Super absorption of ultra-thin organic photovoltaic films , 2014 .

[279]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[280]  Homan Yuen,et al.  43.5% efficient lattice matched solar cells , 2011, Optics + Photonics for Sustainable Energy.

[281]  이정환,et al.  Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes , 2013 .

[282]  S. Denbaars,et al.  Semipolar $({\hbox{20}}\bar{{\hbox{2}}}\bar{{\hbox{1}}})$ InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting , 2013, Journal of Display Technology.

[283]  J. L. Balenzategui,et al.  Detailed modelling of photon recycling: application to GaAs solar cells , 2006 .

[284]  Nelson Tansu,et al.  Analysis of InGaN-delta-InN quantum wells for light-emitting diodes , 2010 .

[285]  Eli Yablonovitch,et al.  Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling , 2002, cond-mat/0204150.

[286]  Xi-hong Lu,et al.  Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. , 2014, Nanoscale.

[287]  Felix Betschon,et al.  960 Gb/s Optical Backplane Ecosystem Using Embedded Polymer Waveguides and Demonstration in a 12G SAS Storage Array , 2013, Journal of Lightwave Technology.

[288]  Hugo Thienpont,et al.  Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics. , 2013, Optics express.

[289]  Yik-Khoon Ee,et al.  Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes With Colloidal Microlens Arrays With Various Aspect Ratios , 2011, IEEE Photonics Journal.

[290]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[291]  Karen Abrinia,et al.  A review of principle and sun-tracking methods for maximizing solar systems output , 2009 .

[292]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[293]  Jinhua Ye,et al.  Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. , 2011, ACS nano.

[294]  Y. Akimov,et al.  Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. , 2009, Optics express.

[295]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[296]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[297]  Randall S. Geels,et al.  Drift leakage current in AlGaInP quantum-well lasers , 1993 .

[298]  A. Nogueira,et al.  A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. , 2014, Nanoscale.

[299]  Tarek A. Kandiel,et al.  Bi(2) WO(6) inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. , 2011, Small.

[300]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[301]  J. Fréchet,et al.  Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor , 2010 .

[302]  Alan J. Heeger,et al.  Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. , 2013, ACS nano.

[303]  Brian E. McCandless,et al.  Brief review of cadmium telluride-based photovoltaic technologies , 2014 .

[304]  David Michael Rowe,et al.  Recent developments in thermoelectric materials , 1986 .

[305]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[306]  Gang Li,et al.  One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive , 2015 .

[307]  M. Turner,et al.  Nanoparticle-polymer photovoltaic cells. , 2008, Advances in colloid and interface science.

[308]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[309]  Wan Mohd Ashri Wan Daud,et al.  A review on advances in photocatalysts towards CO2 conversion , 2014 .

[310]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[311]  Daniel Moses,et al.  Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. , 2011, Nano letters.

[312]  T. Taminiau,et al.  Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency , 2008 .

[313]  Zakya H. Kafafi,et al.  Polymeric photovoltaics with various metallic plasmonic nanostructures , 2013 .

[314]  H. García,et al.  Photocatalytic CO(2) reduction using non-titanium metal oxides and sulfides. , 2013, ChemSusChem.

[315]  Takashi Mukai,et al.  High-Power GaN P-N Junction Blue-Light-Emitting Diodes , 1991 .

[316]  Ahmad Mohammadi,et al.  Gold nanorods and nanospheroids for enhancing spontaneous emission , 2008 .

[317]  L. Tsakalakos Introduction to Photovoltaic Physics, Applications, and Technologies , 2010 .

[318]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[319]  Takashi Mukai,et al.  P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes , 1993 .

[320]  Tetsuro Ogi,et al.  High-Speed Optical Home Network Using Graded Index Plastic Optical Fibers for a Smart House , 2013 .

[321]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[322]  Russell D. Dupuis,et al.  Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer , 2010 .

[323]  N. Tansu,et al.  High-temperature characteristics of Seebeck coefficients for AlInN alloys grown by metalorganic vapor phase epitaxy , 2011 .

[324]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[325]  Henry J. Snaith,et al.  Estimating the Maximum Attainable Efficiency in Dye‐Sensitized Solar Cells , 2010 .

[326]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.