Modeling Forest Aboveground Carbon Density in the Brazilian Amazon with Integration of MODIS and Airborne LiDAR Data

[1]  Alexandre Bouvet,et al.  Forest biomass retrieval approaches from earth observation in different biomes , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[2]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[3]  Steffen Fritz,et al.  A Global Forest Growing Stock, Biomass and Carbon Map Based on FAO Statistics , 2008 .

[4]  Amy L. Neuenschwander,et al.  Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data , 2019, Remote Sensing of Environment.

[5]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[6]  Lana L. Narine,et al.  Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data , 2019, Annals of Forest Research.

[7]  Seung-Kuk Lee,et al.  Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data , 2019, Remote Sensing of Environment.

[8]  Mariela Soto-Berelov,et al.  Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[9]  Roberta E. Martin,et al.  Amazonian landscapes and the bias in field studies of forest structure and biomass , 2014, Proceedings of the National Academy of Sciences.

[10]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[11]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[12]  Göran Ståhl,et al.  Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data , 2018, Remote. Sens..

[13]  R. Houghton,et al.  Tropical forests are a net carbon source based on aboveground measurements of gain and loss , 2017, Science.

[14]  Ranga B. Myneni,et al.  Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .

[15]  Peter Potapov,et al.  Comment on “Tropical forests are a net carbon source based on aboveground measurements of gain and loss” , 2019, Science.

[16]  Emilio Chuvieco,et al.  Characterization of canopy fuels using ICESat/GLAS data , 2012 .

[17]  D. Lu,et al.  Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar Data , 2020, Remote. Sens..

[18]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[19]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[20]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[21]  Sorin C. Popescu,et al.  Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning , 2019, Remote. Sens..

[22]  Lijuan Liu,et al.  Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[23]  Jin Liu,et al.  Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data , 2016, Remote. Sens..

[24]  C. Gleason,et al.  A Review of Remote Sensing of Forest Biomass and Biofuel: Options for Small-Area Applications , 2011 .

[25]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[26]  Bruno Hérault,et al.  Effects of Plot Size and Census Interval on Descriptors of Forest Structure and Dynamics , 2010 .

[27]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[28]  M. Vastaranta,et al.  Status and prospects for LiDAR remote sensing of forested ecosystems , 2013 .

[29]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[30]  H. Doğan,et al.  Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing , 2009 .

[31]  Ramón A. Díaz-Varela,et al.  Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data , 2016, Remote. Sens..

[32]  E. Jiménez,et al.  Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests , 2019, Forests.

[33]  Klaus Scipal,et al.  Ground Data are Essential for Biomass Remote Sensing Missions , 2019, Surveys in Geophysics.

[34]  David Saah,et al.  Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass , 2012 .

[35]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[36]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[37]  Jorge García-Gutiérrez,et al.  A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation , 2016 .

[38]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[39]  M. Keller,et al.  Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon , 2016 .

[40]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[41]  Jean Pierre Henry Balbaud Ometto,et al.  Amazon forest biomass density maps: tackling the uncertainty in carbon emission estimates , 2014, Climatic Change.

[42]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[43]  Simon D. Jones,et al.  Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review , 2019, Remote. Sens..

[44]  Jay D. Miller,et al.  Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) , 2007 .

[45]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[46]  A. Baccini,et al.  Improving pantropical forest carbon maps with airborne LiDAR sampling , 2013 .

[47]  Mathias Schardt,et al.  EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements , 2010 .

[48]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[49]  M. Hansen,et al.  Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013 , 2017, Science Advances.

[50]  R. Valentini,et al.  Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels , 2015 .

[51]  Luciano Vieira Dutra,et al.  A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region , 2012 .

[52]  Jose M. Cardoso Pereira,et al.  An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions , 1999 .

[53]  M. Herold,et al.  The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations , 2020 .

[54]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[55]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[56]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[57]  Heiko Balzter,et al.  Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach , 2020, Remote. Sens..

[58]  Maggi Kelly,et al.  Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass , 2015 .

[59]  Dengsheng Lu,et al.  Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin , 2004 .

[60]  Andreas Huth,et al.  The importance of forest structure for carbon fluxes of the Amazon rainforest , 2018 .

[61]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[62]  R. Fensholt,et al.  Evaluation of satellite based primary production modelling in the semi-arid Sahel , 2006 .

[63]  Pedro Walfir M. Souza Filho,et al.  Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine , 2020, Remote. Sens..

[64]  Guangxing Wang,et al.  Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation , 2016, Remote. Sens..

[65]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[66]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[67]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[68]  E. Mitchard The tropical forest carbon cycle and climate change , 2018, Nature.

[69]  Simone R. Freitas,et al.  Relationships between forest structure and vegetation indices in Atlantic Rainforest , 2005 .

[70]  Binbin He,et al.  Biomass estimation in dense tropical forest using multiple information from single-baseline P-band PolInSAR data , 2019, Remote Sensing of Environment.

[71]  Hong Chi,et al.  National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China , 2015, Remote. Sens..

[72]  Changsheng Li,et al.  Mapping paddy rice agriculture in southern China using multi-temporal MODIS images , 2005 .

[73]  Lijuan Liu,et al.  Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region , 2018, Remote. Sens..

[74]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[75]  Dengsheng Lu,et al.  Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data , 2018, Remote. Sens..

[76]  Lijuan Liu,et al.  A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems , 2016, Int. J. Digit. Earth.

[77]  B. Žalik,et al.  An efficient approach to 3D single tree-crown delineation in LiDAR data , 2015 .

[78]  Priyakant Sinha,et al.  Review of the use of remote sensing for biomass estimation to support renewable energy generation , 2015 .

[79]  Göran Ståhl,et al.  Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data , 2019, Remote Sensing of Environment.

[80]  C. Tucker,et al.  Satellite remote sensing of primary production , 1986 .

[81]  Arturo Sanchez-Azofeifa,et al.  Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada , 2015, Remote. Sens..

[82]  J. A. Marengo,et al.  Uma revisão geral sobre o clima da Amazônia , 1998 .

[83]  D. Roberts,et al.  Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .

[84]  Hui Lin,et al.  Multi-Resolution Mapping and Accuracy Assessment of Forest Carbon Density by Combining Image and Plot Data from a Nested and Clustering Sampling Design , 2016, Remote. Sens..

[85]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[86]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[87]  Cesar Guerreiro Diniz,et al.  High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data , 2016 .

[88]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[89]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .