Cellular anatomy of the mouse primary motor cortex

An essential step toward understanding brain function is to establish a cellular-resolution structural framework upon which multi-scale and multi-modal information spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, through a collaborative effort from the Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based description of one brain structure - the primary motor cortex upper limb area (MOp-ul) of the mouse. Applying state-of-the-art labeling, imaging, computational, and neuroinformatics tools, we delineated the MOp-ul within the Mouse Brain 3D Common Coordinate Framework (CCF). We defined over two dozen MOp-ul projection neuron (PN) types by their anterograde targets; the spatial distribution of their somata defines 11 cortical sublayers, a significant refinement of the classic notion of cortical laminar organization. We further combine multiple complementary tracing methods (classic tract tracing, cell type-based anterograde, retrograde, and transsynaptic viral tracing, high-throughput BARseq, and complete single cell reconstruction) to systematically chart cell type-based MOp input-output streams. As PNs link distant brain regions at synapses as well as host cellular gene expression, our construction of a PN type resolution MOp-ul wiring diagram will facilitate an integrated analysis of motor control circuitry across the molecular, cellular, and systems levels. This work further provides a roadmap towards a cellular resolution description of mammalian brain architecture.

Liya Ding | Xu Li | Yun Wang | James C. Gee | Yimin Wang | Xiangning Li | Xiaoyin Chen | Sarojini M. Attili | Giorgio A. Ascoli | Hongkui Zeng | Partha P. Mitra | Jason Huang | Joel D. Hahn | Nicholas N. Foster | Brian Zingg | Michael S. Bienkowski | Houri Hintiryan | Yaoyao Li | Michael Hawrylycz | Hanchuan Peng | Jesse Gillis | Anthony M. Zador | Pavel Osten | Diek W. Wheeler | Yu-Chi Sun | Stephan Fischer | Katherine S. Matho | Peter A. Groblewski | Lin Gou | Quanxin Wang | Hui Gong | Qingming Luo | Arun Narasimhan | Hideki Kondo | Bingxing Huo | Hong-Wei Dong | Xiaoli Qi | Samik Bannerjee | Jin Yuan | Lydia Ng | Julie A. Harris | Karla E. Hirokawa | Xiuli Kuang | Maitham Naeemi | Uree Chon | Rodrigo Muñoz-Castañeda | Anan Li | Laura Korobkova | Chris Sin Park | Young-Gyun Park | Kathleen Kelly | Xu An | Ian Bowman | Anastasiia Bludova | Ali Cetin | Rhonda Drewes | Florence D’Orazi | Corey Elowsky | William Galbavy | Lei Gao | Joshua T. Hatfield | Philip Lesnar | Mengkuan Lin | Lijuan Liu | Darrick Lo | Judith Mizrachi | Stephanie Mok | Philip R. Nicovich | Ramesh Palaniswamy | Jason Palmer | Elise Shen | Huizhong Tao | Wayne Wakemen | Peng Xie | Shenqin Yao | Muye Zhu | Li I. Zhang | Byung Kook Lim | Yongsoo Kim | Kwanghun Chuang | X William Yang | Z Josh Huang | D. W. Wheeler | Quanxin Wang | Hanchuan Peng | M. Hawrylycz | Hongkui Zeng | P. Groblewski | Ali H. Cetin | Z. J. Huang | Hong-wei Dong | Lydia Ng | P. Mitra | Stephan Fischer | B. Lim | A. Zador | J. Gee | H. Tao | G. Ascoli | Arun Narasimhan | P. Osten | J. Mizrachi | Yongsoo Kim | H. Kondo | Q. Luo | H. Gong | Liya Ding | J. Gillis | Phil Lesnar | Jason Palmer | Xiangning Li | Jing Yuan | Ian Bowman | M. Bienkowski | Lin Gou | P. Nicovich | U. Chon | Shenqin Yao | Florence D. D'Orazi | Stephanie Mok | Brian Zingg | Houri Hintiryan | Muye Zhu | X. W. Yang | Bingxing Huo | M. Lin | E. Shen | R. Palaniswamy | Young-Gyun Park | J. D. Hahn | Darrick Lo | Yu-Chi Sun | K. Matho | M. Naeemi | Xiaoli Qi | R. Muñoz-Castañeda | Laura Korobkova | Le Gao | Xu An | William Galbavy | Kathleen Kelly | Xiuli Kuang | Xu Li | Yaoyao Li | Lijuan Liu | Yimin Wang | Yun Wang | Peng Xie | A. Li | R. Drewes | C. Park | Jason Huang | Corey Elowsky | Anastasiia Bludova | Xiaoyin Chen | Samik Bannerjee | Wayne Wakemen | Kwanghun Chuang | Qingming Luo | L. Korobkova | D. Wheeler | Rodrigo Muñoz-Castañeda

[1]  Georgios D. Evangelidis,et al.  Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Hanchuan Peng,et al.  TeraVR Empowers Precise Reconstruction of Complete 3-D Neuronal Morphology in the Whole Brain , 2019 .

[3]  G. Quirk,et al.  The organization of the rat motor cortex: A microstimulation mapping study , 1986, Brain Research Reviews.

[4]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[5]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[6]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[7]  Hongkui Zeng,et al.  Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. , 2015, Methods.

[8]  Sarojini M. Attili,et al.  Operations research methods for estimating the population size of neuron types , 2019, bioRxiv.

[9]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[10]  D. Hasselquist,et al.  No evidence that carotenoid pigments boost either immune or antioxidant defenses in a songbird , 2018, Nature Communications.

[11]  Miao He,et al.  Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism , 2017, Cell.

[12]  George Z. Mentis,et al.  Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits , 2016, Cell.

[13]  S. Wise,et al.  The motor cortex of the rat: Cytoarchitecture and microstimulation mapping , 1982, The Journal of comparative neurology.

[14]  Shaoqun Zeng,et al.  Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types , 2019, bioRxiv.

[15]  Nicholas N. Foster,et al.  The mouse cortico-striatal projectome , 2016, Nature Neuroscience.

[16]  K. Venkataraju,et al.  Oblique light-sheet tomography: fast and high resolution volumetric imaging of mouse brains , 2017, bioRxiv.

[17]  Jordan Matelsky,et al.  A community-developed open-source computational ecosystem for big neuro data , 2018, Nature Methods.

[18]  Michael I. Miller,et al.  Diffeomorphic Registration With Intensity Transformation and Missing Data: Application to 3D Digital Pathology of Alzheimer's Disease , 2018, bioRxiv.

[19]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[20]  Larry W Swanson,et al.  Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture , 2010, Proceedings of the National Academy of Sciences.

[21]  Hongkui Zeng,et al.  Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics , 2020, bioRxiv.

[22]  Yun Wang,et al.  Hierarchical organization of cortical and thalamic connectivity , 2019, Nature.

[23]  Ian R. Wickersham,et al.  Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus , 2010, Proceedings of the National Academy of Sciences.

[24]  Shaoqun Zeng,et al.  Embedding and Chemical Reactivation of Green Fluorescent Protein in the Whole Mouse Brain for Optical Micro-Imaging , 2017, Front. Neurosci..

[25]  Srinivas C. Turaga,et al.  Mapping social behavior-induced brain activation at cellular resolution in the mouse. , 2014, Cell reports.

[26]  H. Sebastian Seung,et al.  Reconstructing Neuronal Anatomy from Whole-Brain Images , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[27]  G. Allan Johnson,et al.  Digital Atlasing and Standardization in the Mouse Brain , 2011, PLoS Comput. Biol..

[28]  Charles R. Gerfen,et al.  Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.

[29]  G. Elston,et al.  Interlaminar differences in the pyramidal cell phenotype in cortical areas 7m and STP (the superior temporal polysensory area) of the macaque monkey , 2001, Experimental Brain Research.

[30]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[31]  Silvia Arber,et al.  Brainstem nucleus MdV mediates skilled forelimb motor tasks , 2014, Nature.

[32]  Stephan Preibisch,et al.  BigStitcher: Reconstructing high-resolution image datasets of cleared and expanded samples , 2018 .

[33]  Xiaoyin Chen,et al.  High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing , 2018, Cell.

[34]  Kwanghun Chung,et al.  Scalable image processing techniques for quantitative analysis of volumetric biological images from light-sheet microscopy , 2019, bioRxiv.

[35]  Bruce R. Rosen,et al.  The Mind of a Mouse , 2020, Cell.

[36]  Allan R. Jones,et al.  An anatomic gene expression atlas of the adult mouse brain , 2009, Nature Neuroscience.

[37]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[38]  Giorgio A. Ascoli,et al.  An open repository for single-cell reconstructions of the brain forest , 2018, Scientific Data.

[39]  G. Paxinos,et al.  Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates , 2012 .

[40]  K. Conzelmann,et al.  A whole-brain connectivity map of mouse insular cortex , 2020, bioRxiv.

[41]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[42]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[43]  Julie Harris,et al.  Connectional architecture of a mouse hypothalamic circuit node controlling social behavior , 2018, Proceedings of the National Academy of Sciences.

[44]  Liqun Luo,et al.  Viral-genetic tracing of the input–output organization of a central norepinephrine circuit , 2015, Nature.

[45]  J. Kleim,et al.  The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. , 2011, Cerebral cortex.

[46]  Changle Zhou,et al.  Precise segmentation of densely interweaving neuron clusters using G-Cut , 2019, Nature Communications.

[47]  S. Phinn,et al.  Australian vegetated coastal ecosystems as global hotspots for climate change mitigation , 2019, Nature Communications.

[48]  Hanchuan Peng,et al.  Automatic tracing of ultra-volumes of neuronal images , 2016, Nature Methods.

[49]  P. Stark Bounded-Variable Least-Squares: an Algorithm and Applications , 2008 .

[50]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[51]  Li Ning,et al.  Dense reconstruction of brain-wide neuronal population close to the ground truth , 2017, bioRxiv.

[52]  R. S. Waters,et al.  Organization of the Mouse Motor Cortex Studied by Retrograde Tracing and Intracortical Microstimulation (ICMS) Mapping , 1991, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[53]  Partha P. Mitra,et al.  Genetic dissection of glutamatergic neuron subpopulations and developmental trajectories in the cerebral cortex , 2020, bioRxiv.

[54]  Bryan M. Hooks,et al.  Organization of Cortical and Thalamic Input to Pyramidal Neurons in Mouse Motor Cortex , 2013, The Journal of Neuroscience.

[55]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[56]  Allan R. Jones,et al.  Neuroinformatics for Genome-Wide 3-D Gene Expression Mapping in the Mouse Brain , 2007, TCBB.

[57]  G. Ascoli,et al.  Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories , 2004, The Journal of comparative neurology.

[58]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[59]  Giorgio A. Ascoli,et al.  The mouse cortico-tectal projectome , 2020, bioRxiv.

[60]  Naoki Yamawaki,et al.  Synaptic Circuit Organization of Motor Corticothalamic Neurons , 2015, The Journal of Neuroscience.

[61]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[62]  Sara Ballouz,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[63]  Evan Z. Macosko,et al.  An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types , 2020, bioRxiv.

[64]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[65]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[66]  Yu Zhang,et al.  Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills , 2017, Cell.

[67]  Shaoqun Zeng,et al.  Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. , 2013, Optics express.

[68]  Joseph F. Murray,et al.  Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation , 2010, Neural Computation.

[69]  Bo Yang Yu,et al.  Image processing and classification algorithm for yeast cell morphology in a microfluidic chip. , 2011, Journal of biomedical optics.

[70]  Qingming Luo,et al.  A Robust Image Registration Interface for Large Volume Brain Atlas , 2018, Scientific Reports.

[71]  Sarojini M. Attili,et al.  Operations research methods for estimating the population size of neuron types , 2020, Ann. Oper. Res..

[72]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  X. W. Yang,et al.  Genetically-directed Sparse Neuronal Labeling in BAC Transgenic Mice through Mononucleotide Repeat Frameshift , 2017, Scientific Reports.

[74]  Jason Tucciarone,et al.  Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells , 2017 .

[75]  L. Ng,et al.  The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas , 2020, Cell.

[76]  J. Lichtman,et al.  From Cajal to Connectome and Beyond. , 2016, Annual review of neuroscience.

[77]  Kwanghun Chung,et al.  Simultaneous protection of tissue physicochemical properties using polyfunctional crosslinkers , 2018, Nature Biotechnology.

[78]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[79]  Yanjie Li,et al.  Metrics for comparing neuronal tree shapes based on persistent homology , 2016, bioRxiv.

[80]  Giorgio A Ascoli,et al.  Quantifying neuronal size: summing up trees and splitting the branch difference. , 2008, Seminars in cell & developmental biology.

[81]  Brian Zingg,et al.  AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors , 2017, Neuron.

[82]  NgLydia,et al.  Neuroinformatics for Genome-Wide 3-D Gene Expression Mapping in the Mouse Brain , 2007 .

[83]  Brian Zingg,et al.  Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry , 2020, The Journal of Neuroscience.

[84]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[85]  Attila Losonczy,et al.  Rabies Virus CVS-N2cΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability , 2016, Neuron.

[86]  Ian R. Wickersham,et al.  Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons , 2018, Nature Neuroscience.

[87]  Larry W Swanson,et al.  From gene networks to brain networks , 2003, Nature Neuroscience.

[88]  Pavel Osten,et al.  A High Resolution Whole Brain Imaging Using Oblique Light Sheet Tomography , 2017 .

[89]  Giulio Iannello,et al.  Automated Neuron Tracing Methods: An Updated Account , 2016, Neuroinformatics.

[90]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[91]  Concha Bielza,et al.  Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex , 2016, Cerebral cortex.

[92]  Y. Xuan,et al.  A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse , 2019, Nature Neuroscience.

[93]  Giorgio A. Ascoli,et al.  Statistical analysis and data mining of digital reconstructions of dendritic morphologies , 2014, Front. Neuroanat..

[94]  Xiangning Li,et al.  DeepBrainSeg: Automated Brain Region Segmentation for Micro-Optical Images With a Convolutional Neural Network , 2020, Frontiers in Neuroscience.

[95]  Henry Pinkard,et al.  Advanced methods of microscope control using μManager software. , 2014, Journal of biological methods.

[96]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[97]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[98]  Keith C. Cheng,et al.  Enhanced and unified anatomical labeling for a common mouse brain atlas , 2019, Nature Communications.

[99]  Charles R. Gerfen,et al.  High-performance probes for light and electron microscopy , 2015, Nature Methods.

[100]  Liqun Luo,et al.  Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations , 2019, Cell reports.

[101]  A. Pollard,et al.  Limb proportions show developmental plasticity in response to embryo movement , 2017, Scientific Reports.

[102]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[103]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[104]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[105]  Hong Wei Dong,et al.  Allen reference atlas : a digital color brain atlas of the C57Black/6J male mouse , 2008 .

[106]  G. Shepherd Corticostriatal connectivity and its role in disease , 2013, Nature Reviews Neuroscience.

[107]  Hongkui Zeng,et al.  Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice , 2020, Neuron.

[108]  Cheuk Y. Tang,et al.  Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes , 2016, Cell.

[109]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[110]  Kwanghun Chung,et al.  Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping , 2019, bioRxiv.

[111]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[112]  Alexander S. Tolpygo,et al.  High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique , 2015, PloS one.

[113]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[114]  Nicholas N. Foster,et al.  An open access mouse brain flatmap and upgraded rat and human brain flatmaps based on current reference atlases , 2020, The Journal of comparative neurology.

[115]  J. Price :Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/6J Male Mouse , 2008 .