The role of Auger recombination in InAs 1.3-/spl mu/m quantum-dot lasers investigated using high hydrostatic pressure
暂无分享,去创建一个
A. Forchel | I. P. Marko | A. R. Adams | R. Krebs | A. Forchel | A. Andreev | J. Reithmaier | I. Marko | A. Adams | R. Krebs | J. P. Reithmaier | A. D. Andreev
[1] Mario Guzzi,et al. Thermally activated carrier transfer and luminescence line shape in self‐organized InAs quantum dots , 1996 .
[2] Georgy G. Zegrya,et al. Calculation of quantum well laser threshold currents in terms of new channels of nonradiative Auger recombination , 1995, Photonics West.
[3] D. Bimberg,et al. Optical Properties of Self-Organized Quantum Dots: Modeling and Experiments , 2000 .
[4] Levon V. Asryan,et al. Temperature dependence of the threshold current density of a quantum dot laser , 1998 .
[5] S. Mikhrin,et al. Optical properties of quantum dots formed by activated spinodal decomposition for GaAs-based lasers emitting at ∼ 1.3 mm , 2000 .
[6] Nikolai N. Ledentsov,et al. Negative Characteristic Temperature of InGaAs Quantum Dot Injection Laser , 1997 .
[7] M. Henini,et al. In0.5Ga0.5As quantum dot lasers grown on (100) and (311)B GaAs substrates , 1999 .
[8] D. Bimberg,et al. Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .
[9] Mohamed Henini,et al. Carrier thermal escape and retrapping in self-assembled quantum dots , 1999 .
[10] E. O’Reilly,et al. Experimental analysis of temperature dependence in 1.3-/spl mu/m AlGaInAs-InP strained MQW lasers , 1999 .
[11] Alexey E. Zhukov,et al. GaAs-based long-wavelength lasers , 2000 .
[12] Levon V. Asryan,et al. Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser , 1996 .
[13] A. Forchel,et al. High Performance 1.3 µm Quantum-Dot Lasers , 2002 .
[14] O. Shchekin,et al. Discrete energy level separation and the threshold temperature dependence of quantum dot lasers , 2000 .
[15] Aleksey D. Andreev. Modeling of gain for lasers based on CdSe planar QD system in ZnMgSSe matrix , 1998, Photonics West.
[16] H. Ishikawa,et al. 1.3-/spl mu/m CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots , 2000, IEEE Journal of Quantum Electronics.
[17] Johann Peter Reithmaier,et al. High-temperature properties of GaInAs/AlGaAs lasers with improved carrier confinement by short-period superlattice quantum well barriers , 1998 .
[18] Eoin P. O'Reilly,et al. Theory of the electronic structure of GaN/AlN hexagonal quantum dots , 2000 .
[19] A. R. Kovsh,et al. Lasing at a wavelength close to 1.3 µm in InAs quantum-dot structures , 1999 .
[20] A. Andreev,et al. Superior Temperature Performance of 1.3 μm AlGaInAs‐Based Semiconductor Lasers Investigated at High Pressure and Low Temperature , 2001 .
[21] H. Sakaki,et al. Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .
[22] D. Deppe,et al. Low-threshold high-T/sub 0/ 1.3-/spl mu/m InAs quantum-dot lasers due to p-type modulation doping of the active region , 2002, IEEE Photonics Technology Letters.
[23] Karl Woodbridge,et al. Influence of the barriers on the temperature dependence of threshold current in GaAs/AlGaAs quantum well lasers , 1989 .
[24] E. O’Reilly,et al. Strain distributions in quantum dots of arbitrary shape , 1999 .
[25] M. Asada,et al. Gain and the threshold of three-dimensional quantum-box lasers , 1986 .
[26] Stephen J. Sweeney,et al. The temperature dependence of 1.3- and 1.5-/spl mu/m compressively strained InGaAs(P) MQW semiconductor lasers , 1999 .