Properties of the probabilistic implications and S-implications
暂无分享,去创建一个
Michal Baczynski | Wanda Niemyska | Przemyslaw Grzegorzewski | Piotr Helbin | P. Grzegorzewski | M. Baczyński | Wanda Niemyska | Piotr Helbin
[1] Michal Baczynski,et al. Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.
[2] M. J. Frank. On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .
[3] Martin Stepnicka,et al. On the Suitability of the Bandler–Kohout Subproduct as an Inference Mechanism , 2010, IEEE Transactions on Fuzzy Systems.
[4] E. Trillas,et al. On MPT-implication functions for Fuzzy Logic , 2004 .
[5] Lotfi A. Zadeh,et al. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..
[6] Przemyslaw Grzegorzewski,et al. On the Properties of Probabilistic Implications , 2011, Eurofuse.
[7] Przemyslaw Grzegorzewski,et al. Probabilistic implications , 2013, Fuzzy Sets Syst..
[8] Marc Roubens,et al. Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.
[9] Balasubramaniam Jayaram,et al. On the Law of Importation $(x \wedge y) \longrightarrow z \equiv (x \longrightarrow (y \longrightarrow z))$ in Fuzzy Logic , 2008, IEEE Transactions on Fuzzy Systems.
[10] R. Mesiar,et al. ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.
[11] M. J. Frank,et al. Associative Functions: Triangular Norms And Copulas , 2006 .
[12] Humberto Bustince Sola,et al. Advances in Fuzzy Implication Functions , 2013 .
[13] M. J. Frank. On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .
[14] J. Fodor. Contrapositive symmetry of fuzzy implications , 1995 .
[15] Michal Baczynski,et al. Laws of Contraposition and Law of Importation for Probabilistic Implications and Probabilistic S-implications , 2014, IPMU.
[16] Joan Torrens,et al. A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.