Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System

The transverse temporal gyrus of Heschl contains the human auditory cortex. Several schematic maps of the cytoarchitectonic correlate of this functional entity are available, but they present partly conflicting data (number and position of borders of the primary auditory areas) and they do not enable reliable comparisons with functional imaging data in a common spatial reference system. In order to provide a 3-D data set of the precise position and extent of the human primary auditory cortex, its putative subdivisions, and its topographical intersubject variability, we performed a quantitative cytoarchitectonic analysis of 10 brains using a recently established technique for observer-independent definition of areal borders. Three areas, Te1.1, Te1.0, and Te1.2, with a well-developed layer IV, which represent the primary auditory cortex (Brodmann area 41), can be identified along the mediolateral axis of the Heschl gyrus. The cell density was significantly higher in Te1.1 compared to Te1.2 in the left but not in the right hemisphere. The cytoarchitectonically defined areal borders of the primary auditory cortex do not consistently match macroanatomic landmarks like gyral and sulcal borders. The three primary auditory areas of each postmortem brain were mapped to a spatial reference system which is based on a brain registered by in vivo magnetic resonance imaging. The integration of a sample of postmortem brains in a spatial reference system allows one to estimate the spatial variability of each cytoarchitectonically defined region with respect to this reference system. In future, the transfer of in vivo structural and functional data into the same spatial reference system will enable accurate comparisons of cytoarchitectonic maps of the primary auditory cortex with activation centers as established with functional imaging procedures.

[1]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[2]  Richard Arwed Pfeifer,et al.  Myelogenetisch-anatomische Untersuchungen ber das korticale Ende der Hrleitung: , 1922 .

[3]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[4]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[5]  K. Lashley,et al.  The cytoarchitecture of the cerebral cortex of ateles: A critical examination of architectonic studies , 1946, The Journal of comparative neurology.

[6]  G. Bonin,et al.  The isocortex of man , 1951 .

[7]  A. Hopf Die Myeloarchitektonik des Isocortex temporalis beim Menschen , 1954, 1954.

[8]  N. Geschwind,et al.  Human Brain: Left-Right Asymmetries in Temporal Speech Region , 1968, Science.

[9]  H. Goodglass,et al.  Auditory Evoked Response: Meaningfulness of Stimuli and Interhemispheric Asymmetry , 1972, Science.

[10]  G. Celesia Organization of auditory cortical areas in man. , 1976, Brain : a journal of neurology.

[11]  A J Hudspeth,et al.  Cytoarchitectonic mapping by microdensitometry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[14]  N. Geschwind,et al.  Human Brain: Cytoarchitectonic Left-Right Asymmetries in the Temporal Speech Region , 1978 .

[15]  J. Kaas,et al.  Double representation of the body surface within cytoarchitectonic area 3b and 1 in “SI” in the owl monkey (aotus trivirgatus) , 1978, The Journal of comparative neurology.

[16]  J. Kaas,et al.  Multiple representations of the body within the primary somatosensory cortex of primates. , 1979, Science.

[17]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[18]  M. Reite,et al.  Magnetic auditory evoked fields: interhemispheric asymmetry. , 1981, Electroencephalography and clinical neurophysiology.

[19]  H. Seldon Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions , 1981, Brain Research.

[20]  M Reite,et al.  MEG and EEG auditory responses to tone, click and white noise stimuli. , 1982, Electroencephalography and clinical neurophysiology.

[21]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[22]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[23]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[24]  R. Ilmoniemi,et al.  Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man , 1984, Neuroscience Letters.

[25]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[26]  N. Geschwind,et al.  Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. , 1985, Archives of neurology.

[27]  Peter Herscovitch,et al.  Tonotopic organization in human auditory cortex revealed by positron emission tomography , 1985, Hearing Research.

[28]  J. R. Hughes Cerebral lateralization: biological mechanisms, associations and pathology , 1987 .

[29]  Wilfrid Joseph Dixon,et al.  Bmdp Statistical Software Manual: To Accompany the 1988 Software Release , 1988 .

[30]  K Zilles,et al.  Cerebral asymmetry: MR planimetry of the human planum temporale. , 1989, Journal of computer assisted tomography.

[31]  M Hoke,et al.  Tonotopic organization of the auditory cortex: pitch versus frequency representation. , 1989, Science.

[32]  K. Lehnertz,et al.  Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. , 1989, Electroencephalography and clinical neurophysiology.

[33]  Lutz Jäncke,et al.  Total surface of temporoparietal intrasylvian cortex: Diverging left-right asymmetries , 1990, Brain and Language.

[34]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[35]  P. Teale,et al.  Magnetic auditory M100 source location in normal females , 1991, Brain Research Bulletin.

[36]  P. Chauvel,et al.  Localization of the primary auditory area in man. , 1991, Brain : a journal of neurology.

[37]  Activation of the human auditory cortex by speech sounds. , 1991, Acta oto-laryngologica. Supplementum.

[38]  P. Rakic Experimental manipulation of cerebral cortical areas in primates. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  S. F. Witelson,et al.  Sylvian fissure morphology and asymmetry in men and women: Bilateral differences in relation to handedness in men , 1992, The Journal of comparative neurology.

[40]  J. Lauter Processing asymmetries for complex sounds: Comparisons between behavioral ear advantages and electrophysiological asymmetries based on quantitative electroencephalography , 1992, Brain and Cognition.

[41]  R Llinás,et al.  Tonotopic organization of human auditory cortex revealed by multi-channel SQUID system. , 1992, Acta oto-laryngologica.

[42]  D. McFadden A speculation about the parallel ear asymmetries and sex differences in hearing sensitivity and otoacoustic emissions , 1993, Hearing Research.

[43]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[44]  T. Schormann,et al.  Alignment of 3‐D brain data sets originating from MR and histology , 1993 .

[45]  R J Ilmoniemi,et al.  Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. , 1993, Psychophysiology.

[46]  A. Scheibel,et al.  A quantitative dendritic analysis of wernicke's area in humans. II. Gender, hemispheric, and environmental factors , 1993, The Journal of comparative neurology.

[47]  J M Badier,et al.  Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. , 1994, Electroencephalography and clinical neurophysiology.

[48]  Daniel B Hier,et al.  Gender and Aphasia in the Stroke Data Bank , 1994, Brain and Language.

[49]  J. Binder,et al.  Functional magnetic resonance imaging of human auditory cortex , 1994, Annals of neurology.

[50]  A. Iriki,et al.  Bilateral hand representation in the postcentral somatosensory cortex , 1994, Nature.

[51]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[52]  H. Pratt,et al.  Three-channel Lissajous' trajectory of the binaural interaction components in human auditory brain-stem evoked potentials. , 1994, Electroencephalography and clinical neurophysiology.

[53]  P. Teale,et al.  Auditory M100 component 1: relationship to Heschl's gyri. , 1994, Brain research. Cognitive brain research.

[54]  G. Schlaug,et al.  In vivo evidence of structural brain asymmetry in musicians , 1995, Science.

[55]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[56]  T. Elbert,et al.  Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. , 1995, Electroencephalography and clinical neurophysiology.

[57]  P S Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. , 1995, Cerebral cortex.

[58]  C. Leonard,et al.  Magnetic resonance imaging of cerebral anomalies in subjects with resistance to thyroid hormone. , 1995, American journal of medical genetics.

[59]  L. Katz,et al.  Sex differences in the functional organization of the brain for language , 1995, Nature.

[60]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[61]  S. F. Witelson,et al.  Women have greater density of neurons in posterior temporal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  H. Pratt,et al.  Three-channel Lissajous' trajectory of the binaural interaction components of human auditory middle-latency evoked potentials , 1995, Hearing Research.

[63]  F. Perrin,et al.  Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. , 1995, Electroencephalography and clinical neurophysiology.

[64]  Karl Zilles,et al.  Statistics of deformations in histology and application to improved alignment with MRI , 1995, IEEE Trans. Medical Imaging.

[65]  D. Poeppel,et al.  Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds. , 1996, Brain research. Cognitive brain research.

[66]  Karl Zilles,et al.  A New Approach to Fast Elastic Alignment with Applications to Human Brain , 1996, VBC.

[67]  Source localization of middle latency auditory evoked magnetic fields , 1996 .

[68]  Paul J. Abbas,et al.  A chronic microelectrode investigation of the tonotopic organization of human auditory cortex , 1996, Brain Research.

[69]  M. Gazzaniga,et al.  Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features. , 1996, Cerebral cortex.

[70]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[71]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[72]  T. M. Talavage,et al.  Preliminary fMRI evidence for tonotopicity in human auditory cortex , 1996, NeuroImage.

[73]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[74]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[75]  Karl Zilles,et al.  The Developing European Computerized Human Brain Database for All Imaging Modalities , 1996, NeuroImage.

[76]  F Ottaviani,et al.  Tonotopic organization of human auditory cortex analyzed by SPET. , 1997, Audiology : official organ of the International Society of Audiology.

[77]  P. Heil,et al.  Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography , 1997, Journal of Comparative Physiology A.

[78]  V M Haughton,et al.  Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. , 1997, AJNR. American journal of neuroradiology.

[79]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[80]  Karl Zilles,et al.  Limitations of the principal-axes theory , 1997, IEEE Transactions on Medical Imaging.

[81]  B. Rockstroh,et al.  Study of the Human Auditory Cortices Using a Whole-Head Magnetometer: Left vs. Right Hemisphere and Ipsilateral vs. Contralateral Stimulation , 1998, Audiology and Neurotology.

[82]  T Schormann,et al.  Three‐Dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data , 1998, Human brain mapping.

[83]  K. Zilles,et al.  Structural divisions and functional fields in the human cerebral cortex 1 Published on the World Wide Web on 20 February 1998. 1 , 1998, Brain Research Reviews.

[84]  R. J. Henery,et al.  Methods for grouping shapes of synaptic currents recorded from sets of synapses , 1998, Journal of Neuroscience Methods.

[85]  H. Scheich,et al.  Functional magnetic resonance imaging of a human auditory cortex area involved in foreground–background decomposition , 1998, The European journal of neuroscience.

[86]  M. Nicholls Support for A Structural Model of Aural Asymmetries , 1998, Cortex.

[87]  R. Oostenveld,et al.  Increased auditory cortical representation in musicians , 1998, Nature.

[88]  Y. Samson,et al.  Lateralization of Speech and Auditory Temporal Processing , 1998, Journal of Cognitive Neuroscience.

[89]  K. Scheffler,et al.  Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI , 1998, Hearing Research.

[90]  N Schmid,et al.  Visualisierung zentral-auditiver Prozesse mit funktioneller Magnetresonanztomographie [Visualization of Central Auditory Processes Using Functional MRI] , 1998 .

[91]  K Tschopp,et al.  [Visualization of central auditory processes with functional magnetic resonance tomography]. , 1998, Laryngo- rhino- otologie.

[92]  S. Clarke,et al.  Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining , 1998, The European journal of neuroscience.

[93]  C. Leonard,et al.  Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: where is it? , 1998, Cerebral cortex.

[94]  K. Zilles,et al.  Illusory Arm Movements Activate Cortical Motor Areas: A Positron Emission Tomography Study , 1999, The Journal of Neuroscience.

[95]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[96]  B. Gulyás,et al.  Neuronal correlates of real and illusory contour perception: functional anatomy with PET , 1999, The European journal of neuroscience.

[97]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[98]  R. Weisskoff,et al.  Quantitative assessment of auditory cortex responses induced by imager acoustic noise , 1999, Human brain mapping.

[99]  Josef P. Rauschecker,et al.  Auditory cortical plasticity: a comparison with other sensory systems , 1999, Trends in Neurosciences.

[100]  K. Zilles,et al.  t Object Shape Differences Reflected by Somatosensory Cortical Activation , 2000, The Journal of Neuroscience.

[101]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[102]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[103]  O. Andreassen,et al.  Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine , 2000, The Journal of Neuroscience.

[104]  P E Roland,et al.  Somatosensory areas in man activated by moving stimuli: cytoarchitectonic mapping and PET , 2000, Neuroreport.