Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base

This is the first paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search. We have obtained 2.3 million observations of 14 882 sample galaxies over an interval of 11 years (1998 March to 2008 December). We considered 1036 SNe detected in our sample and used an optimal subsample of 726 SNe (274 Type Ia SNe, 116 Type Ibc SNe and Type II 324 SNe) to determine our SN rates. This is the largest and most homogeneous set of nearby SNe ever assembled for this purpose, and ours is the first local SN rate analysis based on CCD imaging and modern image-subtraction techniques. In this paper, we lay the foundation of the study. We derive the recipe for the control-time calculation for SNe with a known luminosity function and provide details on the construction of the galaxy and SN samples used in the calculations. Compared with a complete volume-limited galaxy sample, our sample has a deficit of low-luminosity galaxies but still provides enough statistics for a reliable rate calculation. There is a strong Malmquist bias, so the average size (luminosity or mass) of the galaxies increases monotonically with distance, and this trend is used to showcase a correlation between SN rates and galaxy sizes. Very few core-collapse SNe are found in early-type galaxies, providing strong constraints on the amount of recent star formation within these galaxies. The small average observation interval (∼9 d) of our survey ensures that our control-time calculations can tolerate a reasonable amount of uncertainty in the luminosity functions of SNe. We perform Monte Carlo simulations to determine the limiting magnitude of each image and the SN detection efficiency as a function of galaxy Hubble type. The limiting magnitude and the detection efficiency, together with the luminosity function derived from a complete sample of very nearby SNe in Paper II, will be used to calculate the control time and the SN rates in Paper III.

[1]  I. Hook,et al.  Accepted for publication in The Astrophysical Journal LPNHE 02-02 The distant Type Ia supernova rate , 2002 .

[2]  Caltech,et al.  Supernovae in Low-Redshift Galaxy Clusters: The Type Ia Supernova Rate , 2006, astro-ph/0610228.

[3]  E. Ofek,et al.  The rate of Type Ia supernovae at z ≈ 0.2 from SDSS-I overlapping fields , 2008, 0805.1922.

[4]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[5]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[6]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[7]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[8]  M. Turatto,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2005 .

[9]  Space Radiation Laboratory,et al.  Photometric Typing Analyses of Three Young Supernovae Observed with the Robotic Palomar 60 Inch Telescope , 2004, astro-ph/0411312.

[10]  F. Mannucci,et al.  Nearby supernova rates from the Lick Observatory Supernova Search - IV. A recovery method for the delay-time distribution , 2010, 1002.3056.

[11]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[12]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[13]  J. Wheeler,et al.  Type I Supernovae , 1974 .

[14]  W. M. Wood-Vasey,et al.  EARLY- AND LATE-TIME OBSERVATIONS OF SN 2008ha: ADDITIONAL CONSTRAINTS FOR THE PROGENITOR AND EXPLOSION , 2009, 0912.0732.

[15]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[16]  M. Turatto,et al.  Early-type galaxies with core collapse supernovae , 2008, 0806.4269.

[17]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[18]  J. Bloom,et al.  An Unusually Fast-Evolving Supernova , 2009, Science.

[19]  Adam A. Miller,et al.  THE EXCEPTIONALLY LUMINOUS TYPE II-LINEAR SUPERNOVA 2008es , 2008, 0808.2193.

[20]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[21]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[22]  S. Jha,et al.  Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae , 2006, astro-ph/0602250.

[23]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[24]  F. Zwicky On the Frequency of Supernovae. , 1938 .

[25]  F. Mannucci,et al.  The supernova rate in local galaxy clusters , 2007, 0710.1094.

[26]  S. Bergh INCLINATIONS AND AXIAL RATIOS OF SPIRAL AND IRREGULAR GALAXIES , 1988 .

[27]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[28]  J. Beaulieu,et al.  Type Ia supernova rate at a redshift of ~;0.1 , 2004, astro-ph/0405211.

[29]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[30]  J. Tonry,et al.  The Rate of Type Ia Supernovae at High Redshift , 2005, astro-ph/0509655.

[31]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[32]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[33]  S. Bergh Supernova rates: A progress report , 1991 .

[34]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[35]  A. Filippenko,et al.  Type Ia Supernovae and Cosmology , 2004, astro-ph/0410609.

[36]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[37]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[38]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[39]  Thomas J. Chester,et al.  The 2MASS Large Galaxy Atlas , 2001 .

[40]  T. Pritchard,et al.  RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE , 2010 .

[41]  D. Madgwick,et al.  Spectroscopic Detection of Type Ia Supernovae in the Sloan Digital Sky Survey , 2003, astro-ph/0310887.

[42]  David Branch,et al.  Type Ia Supernovae as Standard Candles , 1993 .

[43]  Classifications of the Host Galaxies of Supernovae, Set III , 2003, astro-ph/0308195.

[44]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[45]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[46]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[47]  Adam G. Riess,et al.  HIGH-REDSHIFT SUPERNOVA RATES , 2004 .

[48]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[49]  The Supernova Rate in Shapley-Ames Galaxies , 1987 .

[50]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[51]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[52]  G. de Vaucouleurs,et al.  Second reference catalogue of bright galaxies , 1976 .

[53]  D. Maoz,et al.  Photometric Identification of Young Stripped‐Core Supernovae , 2004, astro-ph/0403296.

[54]  R. Thomas,et al.  A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.

[55]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[56]  R. Kirshner,et al.  SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .

[57]  Bohdan Paczynski,et al.  Small-telescope astronomy on global scales : IAU Colloquium 183, Proceedings of a Colloquium held in Kenting, Taiwan 4-8 January 2001 , 2001 .

[58]  M. Sullivan,et al.  The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.

[59]  I. Paris,et al.  Relative frequencies of supernovae types: dependence on host galaxy magnitude, galactocentric radius, and local metallicity , 2009, 0905.3986.

[60]  W. M. Wood-Vasey,et al.  SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA , 2009, 0902.2794.

[61]  Harry L. Shipman,et al.  White Dwarfs: Cosmological and Galactic Probes , 2005 .

[62]  M. Richmond,et al.  SN 1997bs in M66: Another Extragalactic η Carinae Analog? , 2000, astro-ph/0009027.

[63]  C. Kochanek,et al.  The K-Band Galaxy Luminosity Function , 2000, astro-ph/0011456.

[64]  European Southern Observatory,et al.  Why Are Radio Galaxies Prolific Producers of Type Ia Supernovae? , 2005, astro-ph/0504087.

[65]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[66]  Supernovae in deep Hubble Space Telescope galaxy cluster fields: cluster rates and field counts , 2001, astro-ph/0109089.

[67]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[68]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[69]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[70]  A. Pastorello,et al.  A low-energy core-collapse supernova without a hydrogen envelope , 2009, Nature.

[71]  K. Stanek,et al.  The Fate of the Most Massive Stars , 2005 .

[72]  Weidong Li,et al.  Classifications of the Host Galaxies of Supernovae , 2002, astro-ph/0204298.

[73]  R. Quimby Supernova 2006gy in NGC 1260 , 2006 .

[74]  Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers , 2004, astro-ph/0408419.

[75]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[76]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[77]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[78]  Classifications of the Host Galaxies of Supernovae, Set III , 2003, astro-ph/0504668.

[79]  Thomas Matheson,et al.  Not Color‐Blind: Using Multiband Photometry to Classify Supernovae , 2002 .

[80]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[81]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[82]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[83]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[84]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6 , 2007, 0707.0393.

[85]  P. Prugniel,et al.  Hyperleda. I. Identification and designation of galaxies , 2003 .

[86]  Bayesian Single-Epoch Photometric Classification of Supernovae , 2006, astro-ph/0610129.

[87]  Alexei V. Filippenko,et al.  A High Intrinsic Peculiarity Rate among Type Ia Supernovae , 2000, astro-ph/0006292.

[88]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[89]  Michael W. Richmond,et al.  THE BERKELEY AUTOMATIC IMAGING TELESCOPE , 1993 .

[90]  L. Strolger,et al.  The Extended HST Supernova Survey: The Rate of SNe Ia at z > 1.4 Remains Low , 2008, 0803.1130.