暂无分享,去创建一个
John D. Lafferty | Stephen Della Pietra | Vincent J. Della Pietra | S. D. Pietra | V. D. Pietra | J. Lafferty
[1] David T. Brown,et al. A Note on Approximations to Discrete Probability Distributions , 1959, Inf. Control..
[2] J. Darroch,et al. Generalized Iterative Scaling for Log-Linear Models , 1972 .
[3] L. Baum,et al. An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .
[4] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[5] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[6] P. Diaconis,et al. Conjugate Priors for Exponential Families , 1979 .
[7] E. T. Jaynes,et al. Papers on probability, statistics and statistical physics , 1983 .
[8] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[9] N. J. Cohen,et al. Higher-Order Boltzmann Machines , 1986 .
[10] R. Nigel Horspool,et al. Data Compression Using Dynamic Markov Modelling , 1987, Comput. J..
[11] Terrence J. Sejnowski,et al. A Learning Algorithm for Boltzmann Machines , 1985, Cognitive Sciences.
[12] L. Younes. Estimation and annealing for Gibbsian fields , 1988 .
[13] Stuart German,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .
[14] I. Csiszár. A geometric interpretation of Darroch and Ratcliff's generalized iterative scaling , 1989 .
[15] Bernard Chalmond,et al. An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..
[16] D. Geman. Random fields and inverse problems in imaging , 1990 .
[17] John Cocke,et al. A Statistical Approach to Machine Translation , 1990, CL.
[18] Robert L. Mercer,et al. A Statistical Approach to Sense Disambiguation in Machine Translation , 1991, HLT.
[19] William J. Byrne,et al. Alternating minimization and Boltzmann machine learning , 1992, IEEE Trans. Neural Networks.
[20] Robert L. Mercer,et al. Class-Based n-gram Models of Natural Language , 1992, CL.
[21] C. Geyer,et al. Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .
[22] C. Hwang,et al. Optimal Spectral Structure of Reversible Stochastic Matrices, Monte Carlo Methods and the Simulation of Markov Random Fields , 1992 .
[23] Dana Ron,et al. The Power of Amnesia , 1993, NIPS.
[24] N. Balram,et al. Noncausal Gauss Markov random fields: Parameter structure and estimation , 1993, IEEE Trans. Inf. Theory.
[25] B. Gidas,et al. A Variational Method for Estimating the Parameters of MRF from Complete or Incomplete Data , 1993 .
[26] A. Frigessi,et al. Convergence of Some Partially Parallel Gibbs Samplers with Annealing , 1993 .
[27] Gerasimos Potamianos,et al. Partition function estimation of Gibbs random field images using Monte Carlo simulations , 1993, IEEE Trans. Inf. Theory.
[28] Andreas Stolcke,et al. Best-first Model Merging for Hidden Markov Model Induction , 1994, ArXiv.
[29] Adam L. Berger,et al. A Maximum Entropy Approach to Natural Language Processing , 1996, CL.