How does an fMRI voxel sample the neuronal activity pattern: Compact-kernel or complex spatiotemporal filter?

[1]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[2]  S. McKee,et al.  Spatial configurations for visual hyperacuity , 1977, Vision Research.

[3]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[6]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. McCarthy,et al.  Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Wandell Foundations of vision , 1995 .

[9]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[10]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[11]  James P. Keener,et al.  Mathematical physiology , 1998 .

[12]  H. Duvernoy,et al.  The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply , 1999 .

[13]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[14]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[15]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[16]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[17]  H. John Caulfield,et al.  Optical information processing: a tribute to Adolf Lohmann , 2002 .

[18]  Klaus Biedermann The Eye, Hartmann, Shack, and Scheiner , 2002 .

[19]  L. Toth,et al.  How accurate is magnetic resonance imaging of brain function? , 2003, Trends in Neurosciences.

[20]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[21]  Matthew Brett,et al.  An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images , 2003, NeuroImage.

[22]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003 .

[23]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[24]  Nikolaus Kriegeskorte,et al.  Functional magnetic resonance imaging of the human object-vision system : methodological and empirical contributions , 2004 .

[25]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[26]  Geoffrey M Boynton,et al.  Imaging orientation selectivity: decoding conscious perception in V1 , 2005, Nature Neuroscience.

[27]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[28]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[29]  Jeff H. Duyn,et al.  Temporal dynamics of the BOLD fMRI impulse response , 2005, NeuroImage.

[30]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[31]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[32]  Essa Yacoub,et al.  Frontiers of brain mapping using MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[33]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[34]  Nikolaus Kriegeskorte,et al.  Analyzing for information, not activation, to exploit high-resolution fMRI , 2007, NeuroImage.

[35]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[36]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[37]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[38]  David J. Heeger,et al.  The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring , 2007, NeuroImage.

[39]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[40]  Karl J. Friston,et al.  Bayesian decoding of brain images , 2008, NeuroImage.

[41]  Essa Yacoub,et al.  Mechanisms underlying decoding at 7 T: Ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye , 2010, NeuroImage.

[42]  Justin L. Gardner,et al.  Is cortical vasculature functionally organized? , 2010, NeuroImage.

[43]  Hans P. Op de Beeck,et al.  Against hyperacuity in brain reading: Spatial smoothing does not hurt multivariate fMRI analyses? , 2010, NeuroImage.