A bacterial source for mollusk pyrone polyketides.

[1]  J. Rivier,et al.  Characterization of two neuronal subclasses through constellation pharmacology , 2012, Proceedings of the National Academy of Sciences.

[2]  A. Fontana,et al.  One metabolite, two pathways: convergence of polypropionate biosynthesis in fungi and marine molluscs. , 2012, Organic letters.

[3]  D. Yoshikami,et al.  Functional profiling of neurons through cellular neuropharmacology , 2012, Proceedings of the National Academy of Sciences.

[4]  K. Penn,et al.  Comparative genomics reveals evidence of marine adaptation in Salinispora species , 2012, BMC Genomics.

[5]  Douglas W. Yu,et al.  A Single Streptomyces Symbiont Makes Multiple Antifungals to Support the Fungus Farming Ant Acromyrmex octospinosus , 2011, PloS one.

[6]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[7]  A. Light,et al.  Nobilamides A-H, long-acting transient receptor potential vanilloid-1 (TRPV1) antagonists from mollusk-associated bacteria. , 2011, Journal of medicinal chemistry.

[8]  J. Ravel,et al.  Variation in Tropical Reef Symbiont Metagenomes Defined by Secondary Metabolism , 2011, PloS one.

[9]  M. Spiteller,et al.  Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants , 2011, Proceedings of the National Academy of Sciences.

[10]  Lynne A. Goodwin,et al.  Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509T) , 2010, Standards in genomic sciences.

[11]  Yu Zeng,et al.  Isolation and characterization of a Nocardiopsis sp. from honeybee guts. , 2010, FEMS microbiology letters.

[12]  K. Benkendorff Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs , 2010, Biological reviews of the Cambridge Philosophical Society.

[13]  Douglas W. Yu,et al.  A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus , 2010, BMC Biology.

[14]  J. Imhoff,et al.  Nocapyrones A-D, gamma-pyrones from a Nocardiopsis strain isolated from the marine sponge Halichondria panicea. , 2010, Journal of natural products.

[15]  Bernd Schneider,et al.  Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. , 2010, Nature chemical biology.

[16]  C. Hertweck,et al.  Evolution of metabolic diversity in polyketide-derived pyrones: using the non-colinear aureothin assembly line as a model system. , 2009, Phytochemistry.

[17]  A. Light,et al.  Microhabitats within Venomous Cone Snails Contain Diverse Actinobacteria , 2009, Applied and Environmental Microbiology.

[18]  Jörn Piel,et al.  Metabolites from symbiotic bacteria. , 2009, Natural product reports.

[19]  J. Handelsman,et al.  Symbioses: A Key Driver of Insect Physiological Processes, Ecological Interactions, Evolutionary Diversification, and Impacts on Humans* , 2009, Environmental entomology.

[20]  A. Fontana,et al.  Shaping the Polypropionate Biosynthesis in the Solar‐Powered Mollusc Elysia viridis , 2009, Chembiochem : a European journal of chemical biology.

[21]  E. Schmidt Trading molecules and tracking targets in symbiotic interactions. , 2008, Nature chemical biology.

[22]  H. Blöcker,et al.  From genetic diversity to metabolic unity: studies on the biosynthesis of aurafurones and aurafuron-like structures in myxobacteria and streptomycetes. , 2007, Journal of molecular biology.

[23]  E. Schmidt,et al.  Characterization of SafC, a Catechol 4-O-Methyltransferase Involved in Saframycin Biosynthesis , 2007, Applied and Environmental Microbiology.

[24]  R. Reid,et al.  Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. , 2006, Chemistry & biology.

[25]  A. Díaz-Marrero,et al.  The chemistry of marine pulmonate gastropods. , 2006, Progress in molecular and subcellular biology.

[26]  A. Fontana Biogenetic proposals and biosynthetic studies on secondary metabolites of opisthobranch molluscs. , 2006, Progress in molecular and subcellular biology.

[27]  P. Northcote,et al.  Marine natural products. , 2006, Natural product reports.

[28]  F. Lejbkowicz,et al.  Identification of Nocardiopsis dassonvillei in a Blood Sample from a Child , 2005 .

[29]  L. Petrocellis,et al.  Cyercenes, novel pyrones from the ascoglossan molluscCyerce cristallina. Tissue distribution, biosynthesis and possible involvement in defense and regenerative processes , 1991, Experientia.

[30]  Michaela E. Larsson,et al.  Diastereoselective Addition of Organozinc Reagents to 2-alkyl-3-(arylsulfanyl)propanals , 2004 .

[31]  B. Olivera,et al.  A novel structural class of toxins: the methionine-rich peptides from the venoms of turrid marine snails (Mollusca, Conoidea). , 2004, Toxicon : official journal of the International Society on Toxinology.

[32]  S. Bienz,et al.  Stereoconvergent Preparation of Chiral Vinylsilanes by Cuprate Substitution of α‐Acetoxyallylsilanes. Application to the Synthesis of (S)‐(+)‐Bishomomanicone. , 2004 .

[33]  B. Olivera,et al.  Conus venoms: a rich source of novel ion channel-targeted peptides. , 2004, Physiological reviews.

[34]  S. Bienz,et al.  Stereoconvergent preparation of chiral vinylsilanes by cuprate substitution of α-acetoxyallylsilanes. Application to the synthesis of (S)-(+)-bishomomanicone , 2003 .

[35]  Gi-Ho Sung,et al.  Ancient Tripartite Coevolution in the Attine Ant-Microbe Symbiosis , 2003, Science.

[36]  B. Olivera Conus Venom Peptides: Reflections from the Biology of Clades and Species , 2002 .

[37]  M. Rumpho,et al.  Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. , 2000, Plant physiology.

[38]  T. Kieser Practical streptomyces genetics , 2000 .

[39]  G. Cimino,et al.  Chemical Defence in Cephalaspidean Gastropods: Origin, Anatomical Location and Ecological Roles , 1999 .

[40]  M. Garson,et al.  Marine polypropionates. , 1998, Natural product reports.

[41]  R. Andersen,et al.  Investigations of Terpenoid Biosynthesis by the Dorid Nudibranch Cadlina luteomarginata. , 1997, The Journal of organic chemistry.

[42]  D. Andrews,et al.  Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Gavagnin,et al.  Secondary metabolites from Mediterranean Elysioidea: origin and biological role , 1994 .

[44]  L. Petrocellis,et al.  Histological and biochemical bases of defense mechanisms in four species of Polybranchioidea ascoglossan molluscs , 1993 .

[45]  P. Sonnet,et al.  Synthesis and characterization of enantiomers of 5- and 6-methyloctanoic acids , 1990 .

[46]  M. Garson,et al.  De Novo biosynthesis of polypropionate metabolites in the marine pulmonate Siphonaria denticulata , 1988 .

[47]  G. Cimino,et al.  New propionate-derived metabolites from Aglaja depicta and from its prey Bulla striata (opisthobranch mollusks) , 1987 .

[48]  C. Ireland,et al.  Photosynthetic Marine Mollusks: In vivo 14C Incorporation into Metabolites of the Sacoglossan Placobranchus ocellatus , 1979, Science.

[49]  W. Fenical,et al.  NAVENONES A-C- TRAIL-BREAKING ALARM PHEROMONES FROM THE MARINE OPISTHOBRANCH NAVANAX INERMIS , 1977 .

[50]  H. Mosher,et al.  Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and .alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters , 1973 .

[51]  J. Baldas,et al.  Mass spectrometry of heterocyclic compounds , 1971 .