Low-operating-energy directly modulated lasers for short-distance optical interconnects

We review recent developments in directly modulated lasers (DMLs) with low operating energy for datacom and computercom applications. Key issues are their operating energy and the cost for employing them in these applications. To decrease the operating energy, it is important to reduce the active volume of the laser while maintaining the cavity Q-factor or photon lifetime in the cavity. Therefore, how to achieve high-reflectivity mirrors has been the main challenge in reducing the operating energy. In terms of the required output power from the lasers, the required input power into the photodetector and the transmission distance determine the lower limit of laser active volume. Therefore, the operating energy and output power are in a trade-off relationship. In designing the lasers, the cavity volume, quantum well number, and optical confinement factor are critical parameters. For reducing the cost, it is important to fabricate a large-scale photonic integrated circuit (PIC) comprising DMLs, an optical multiplexer, and monitor photodetectors because the lower assembly cost reduces the overall cost. In this context, silicon (Si) photonics technology plays a key role in fabricating large-scale PICs with low cost, and heterogeneous integration of DMLs and Si photonics devices has attracted much attention. We will describe fabrication technologies for heterogeneous integration and experimental results for DMLs on a Si substrate.

[1]  Gunther Roelkens,et al.  Vertical‐Cavity Silicon‐Integrated Laser with In‐Plane Waveguide Emission at 850 nm , 2018 .

[2]  M. Notomi,et al.  Ultralow Operating Energy Electrically Driven Photonic Crystal Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  M. Sugo,et al.  Stable cw operation at room temperature of a 1.5‐μm wavelength multiple quantum well laser on a Si substrate , 1992 .

[4]  Yoh Ogawa,et al.  Electrical characteristics of directly-bonded GaAs and InP , 1993 .

[5]  Oskars Ozolins,et al.  25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55- $\mu \text{m}$ III-V/SOI DML , 2017, IEEE Photonics Technology Letters.

[6]  Takuro Fujii,et al.  Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer. , 2014, Optics express.

[7]  Masaya Notomi,et al.  Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser. , 2012, Optics express.

[8]  Yoshinori Tanaka,et al.  High-Q nanocavity with a 2-ns photon lifetime. , 2007, Optics express.

[9]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .

[10]  Fumio Koyama,et al.  High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance , 2014 .

[11]  InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[12]  F. Kano,et al.  Design and Fabrication of 10-/40-Gb/s, Uncooled Electroabsorption Modulator Integrated DFB Laser With Butt-Joint Structure , 2010, Journal of Lightwave Technology.

[13]  D.M. Byrne,et al.  A laser diode model based on temperature dependent rate equations , 1989, IEEE Photonics Technology Letters.

[14]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[15]  I. Sagnes,et al.  Hybrid indium phosphide-on-silicon nanolaser diode , 2017, Nature Photonics.

[16]  Takuro Fujii,et al.  Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon , 2015 .

[17]  Daniel M. Kuchta High capacity VCSEL-based links , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[18]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  R. Gutmann,et al.  Adhesive wafer bonding , 2006 .

[20]  Tsuyoshi Yamamoto,et al.  Twin-mirror membrane distributed-reflector lasers using 20-μm-long active region on Si substrates. , 2018, Optics express.

[21]  M. Asada,et al.  Measurement of spontaneous emission efficiency and nonradiative recombinations in 1.58‐μm wavelength GaInAsP/InP crystals , 1982 .

[22]  Jack L. Jewell,et al.  Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes , 1989 .

[23]  Design of Lateral-Current-Injection-Type Membrane Distributed-Feedback Lasers for On-Chip Optical Interconnections , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Fan Yu,et al.  LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission , 2012, OFC/NFOEC.

[25]  Yasuharu Suematsu,et al.  Resonance-like characteristics of the direct modulation of a junction laser , 1967 .

[26]  Effect of gain nonlinearities on the dynamic response of single-mode semiconductor lasers , 1989, IEEE Photonics Technology Letters.

[27]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[28]  Di Liang,et al.  A Distributed Bragg Reflector Silicon Evanescent Laser , 2008, IEEE Photonics Technology Letters.

[29]  Masaya Notomi,et al.  Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity , 2007 .

[30]  Takashi Kurokawa,et al.  Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate , 1997 .

[31]  Alex Mutig,et al.  Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C , 2014 .

[32]  R. Olshansky,et al.  Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources , 1984 .

[33]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Masayuki Fujita,et al.  Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor , 1999 .

[35]  M. Notomi,et al.  High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted , 2010 .

[36]  S. Arai,et al.  Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation , 2003 .

[37]  Y. Itaya,et al.  Low-threshold operation of 1.5μm buried-heterostructure DFB lasers grown entirely by low-pressure MOVPE , 1987 .

[38]  K. Iga,et al.  Semiconductor Lasers in Photonics , 2008, Journal of Lightwave Technology.

[39]  A. Scherer,et al.  Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization , 1991 .

[40]  Hui Li,et al.  56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s , 2012 .

[41]  A. N. Al-Omari,et al.  Low thermal resistance high-speed top-emitting 980-nm VCSELs , 2006, IEEE Photonics Technology Letters.

[42]  A. Shakoor,et al.  Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier , 2016 .

[43]  Takuro Fujii,et al.  Heterogeneously Integrated Membrane Lasers on Si Substrate for Low Operating Energy Optical Links , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  I. Hayashi,et al.  JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE , 1970 .

[45]  J. Nishizawa,et al.  Amplitude modulation of diode laser light in millimeter-wave region , 1968 .

[46]  S. Arai,et al.  Sub-milliampere operation of 1.55 /spl mu/m wavelength high index-coupled buried heterostructure distributed feedback lasers , 2000 .

[47]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[48]  Kouji Nakahara,et al.  Direct Modulation at 56 and 50 Gb/s of 1.3- $\mu $ m InGaAlAs Ridge-Shaped-BH DFB Lasers , 2015, IEEE Photonics Technology Letters.

[49]  Shigeru Nakagawa,et al.  Energy-Efficient 1060-nm Optical Link Operating up to 28 Gb/s , 2015, Journal of Lightwave Technology.

[50]  Hiroaki Sanjoh,et al.  25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km SMF transmission with 1.3 μm InGaAlAs-based DML , 2014 .

[51]  Geert Morthier,et al.  43 Gb/s NRZ-OOK Direct Modulation of a Heterogeneously Integrated InP/Si DFB Laser , 2017, Journal of Lightwave Technology.

[52]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[53]  A. R. Goodwin,et al.  Direct modulation of double-heterostructure lasers at rates up to 1 Gbit/s , 1973 .

[54]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[55]  Takuro Fujii,et al.  Directly Modulated DFB Laser on SiO$_{\bf 2}$ /Si Substrate for Datacenter Networks , 2015, Journal of Lightwave Technology.

[56]  M. Notomi,et al.  28.5-fJ/bit On-chip Optical Interconnect Using Monolithically Integrated Photonic Crystal Laser and Photodetector , 2012 .

[57]  Yuta Ueda,et al.  Monolithically integrated directly modulated DFB laser array with MMI coupler for 100GBASE-LR4 application , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[58]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[59]  R. Schatz,et al.  Impact of Losses in the Bragg Section on the Dynamics of Detuned Loaded DBR Lasers , 2010, IEEE Journal of Quantum Electronics.

[60]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[61]  Munehiko Nagatani,et al.  A 137-mW, 4 ch × 25-Gbps Low-Power Compact Transmitter Flip-Chip-Bonded 1.3-μm LD-Array-on-Si , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[62]  A. Yariv,et al.  High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms , 2014, Proceedings of the National Academy of Sciences.

[63]  D. P. Worland,et al.  Long-Wavelength VCSEL Using High-Contrast Grating , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[64]  Yasuhiko Arakawa,et al.  Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers , 1985 .

[65]  Daisuke Inoue,et al.  High-modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate. , 2015, Optics express.

[66]  J. E. Goell,et al.  A 274-Mb/s optical-repeater experiment employing a GaAs laser , 1973 .

[67]  M. Schell,et al.  40 Gbit/s directly modulated lasers: physics and application , 2011, OPTO.

[68]  Takuro Fujii,et al.  Energy-Efficient 120-Gbps DMT Transmission Using a 1.3-μm Membrane Laser on Si , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[69]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[70]  M. Okai Spectral characteristics of distributed feedback semiconductor lasers and their improvements by corrugation‐pitch‐modulated structure , 1994 .

[71]  Yasuhiro Matsui,et al.  28-Gbaud PAM4 and 56-Gb/s NRZ Performance Comparison Using 1310-nm Al-BH DFB Laser , 2016, Journal of Lightwave Technology.

[72]  Masaya Notomi,et al.  Integrated on-chip optical links using photonic-crystal lasers and photodetectors with current blocking trenches , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[73]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[74]  H. Louchet,et al.  High Speed Direct Modulation of a Heterogeneously Integrated InP/SOI DFB Laser , 2016, Journal of Lightwave Technology.

[75]  T. Kurokawa,et al.  Novel technology for hybrid integration of photonic and electronic circuits , 1996, IEEE Photonics Technology Letters.

[76]  Fumio Koyama,et al.  Enhancing the modulation bandwidth of VCSELs to the millimeter-waveband using strong transverse slow-light feedback. , 2015, Optics express.

[77]  M. Matsuda,et al.  1.3-μm-Wavelength AlGaInAs Multiple-Quantum-Well Semi-Insulating Buried-Heterostructure Distributed-Reflector Laser Arrays on Semi-Insulating InP Substrate , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[78]  T. Watanabe,et al.  Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structures , 2010, 36th European Conference and Exhibition on Optical Communication.

[79]  F. Tuinstra,et al.  Critical thickness for pseudomorphic growth of Si/Ge alloys and superlattices , 1988 .

[80]  M. Yamada,et al.  Anistropy and broadening of optical gain in a GaAs/AlGaAs multiquantum-well laser , 1985, IEEE Journal of Quantum Electronics.

[81]  John E. Cunningham,et al.  Progress in Low-Power Switched Optical Interconnects , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[82]  Gunther Roelkens,et al.  Silicon-Integrated Hybrid-Cavity 850-nm VCSELs by Adhesive Bonding: Impact of Bonding Interface Thickness on Laser Performance , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[83]  Koji Yamada,et al.  Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. , 2016, Optics express.

[84]  A. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[85]  Kent D. Choquette,et al.  Modified spontaneous emission from laterally injected photonic crystal emitter , 2009 .

[86]  Hiroshi Fukuda,et al.  Monolithic Integration of an 8-channel Directly Modulated Membrane-laser Array and a SiN AWG Filter on Si , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[87]  M. Itoh,et al.  4 × 25.8 Gbit/s (100 Gbit/s) simultaneous operation of ingaalas based DML array monolithically integrated with MMI coupler , 2015 .

[88]  R. Eppenga,et al.  New k.p theory for GaAs/Ga 1-x A1 x As-type quantum wells , 1987 .

[89]  D. Van Thourhout,et al.  Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[90]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[91]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[92]  F. Chatenoud,et al.  Modeling of quantum-well lasers with electro-opto-thermal interaction , 1995 .

[93]  van der Jjgm Jos Tol,et al.  Moore's law in photonics , 2012 .

[94]  Larry A. Coldren,et al.  Submilliamp threshold vertical‐cavity laser diodes , 1990 .

[95]  K. Vahala,et al.  Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators , 2004 .

[96]  Masayuki Fujita,et al.  Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 /spl mu/A , 2000 .

[97]  Yoshio Noguchi,et al.  CW operation of DFB-BH GaInAsP/InP lasers in 1.5 μm wavelength region , 1982 .

[98]  Toshihiko Baba,et al.  Low-threshold lasing and Purcell effect in microdisk lasers at room temperature , 2003 .

[99]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[100]  Steve Grubb,et al.  400 Gbit/s (10 channel × 40 Gbit/s) DWDM photonic integrated circuits , 2005 .

[101]  H. Statz,et al.  Spectral Output of Semiconductor Lasers , 1964 .

[102]  Y. Suematsu,et al.  Lasing characteristics of 1.5 - 1.6 µm GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors , 1981, IEEE Journal of Quantum Electronics.

[103]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[104]  John E. Bowers,et al.  Propagation delays and transition times in pulse-modulated semiconductor lasers , 1986 .

[105]  Toshihiko Baba,et al.  Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .

[106]  W. Hofmann,et al.  Energy-efficient 1.3 μm short-cavity VCSELs for 30 Gb/s error-free optical links , 2012, ISLC 2012 International Semiconductor Laser Conference.

[107]  R. Baets,et al.  Design of an 845-nm GaAs Vertical-Cavity Silicon-Integrated Laser with an Intracavity Grating for Coupling to a SiN Waveguide Circuit , 2017, IEEE Photonics Journal.

[108]  R. Schatz,et al.  Two-section InGaAsP DBR-lasers at 1.55 /spl mu/m wavelength with 31 GHz direct modulation bandwidth , 1997, Conference Proceedings. 1997 International Conference on Indium Phosphide and Related Materials.

[109]  A Yariv,et al.  Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature. , 1987, Optics letters.

[110]  Masaya Notomi,et al.  20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. , 2011, Optics express.

[111]  Tsuyoshi Yamamoto,et al.  Evaluation of Device Parameters for Membrane Lasers on Si Fabricated with Active-Layer Bonding Followed by Epitaxial Growth , 2017, IEICE Trans. Electron..

[112]  Hiroshi Shimizu,et al.  1060nm VCSEL for inter-chip optical interconnection , 2011, OPTO.

[113]  T. Tanaka,et al.  100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[114]  Tetsuo Soga,et al.  Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition , 1986 .

[115]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[116]  Joris Van Campenhout,et al.  Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer , 2017 .

[117]  Johan S. Gustavsson,et al.  High-Speed VCSELs With Strong Confinement of Optical Fields and Carriers , 2016, Journal of Lightwave Technology.

[118]  Y. Ohkura,et al.  Extremely low-threshold 1.3 μm GaInAsP/InP DFB PPIBH laser , 1988 .

[119]  K. Nakahara,et al.  40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3-$\mu$m InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers , 2007, IEEE Photonics Technology Letters.

[120]  I. Montrosset,et al.  Modulation speed enhancement by coupling to higher order resonances: a road towards 40 GHz bandwidth lasers on InP , 2005, International Conference on Indium Phosphide and Related Materials, 2005.

[121]  Y. Matsushima,et al.  Zn‐diffused In0.53Ga0.47As/InP avalanche photodetector , 1979 .

[122]  R. Pu,et al.  Thermal resistance of VCSELs bonded to integrated circuits , 1999, IEEE Photonics Technology Letters.

[123]  F. Kano,et al.  Operation of a 25-Gb/s Direct Modulation Ridge Waveguide MQW-DFB Laser up to 85 $^{\circ}$ C , 2009, IEEE Photonics Technology Letters.

[124]  Kam Y. Lau,et al.  Direct amplitude modulation of short‐cavity GaAs lasers up to X‐band frequencies , 1983 .

[125]  K. Adachi,et al.  25-Gb/s Multichannel 1.3- $\mu$m Surface-Emitting Lens-Integrated DFB Laser Arrays , 2011, Journal of Lightwave Technology.

[126]  T. Sekiguchi,et al.  Sb Surfactant Effect on Defect Evolution in Compressively Strained In0.80Ga0.20As Quantum Well on InP Grown by Metalorganic Vapor Phase Epitaxy , 2008 .

[127]  Mitsuru Ekawa,et al.  Uncooled, low-driving-current 25.8 Gbit/s direct modulation using 1.3 μm AlGaInAs MQW distributed-reflector lasers , 2012 .

[128]  T. Tsuchizawa,et al.  Silicon photonic circuit with polarization diversity. , 2008, Optics express.

[129]  John E. Bowers,et al.  Quantum dot lasers for silicon photonics [Invited] , 2015 .

[130]  Mrt Tan,et al.  1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate , 2017 .

[131]  Kohroh Kobayashi Transverse Mode Control in Semiconductor Lasers , 1989 .

[132]  K. Kimura,et al.  Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate , 2013 .

[133]  Hidetaka Nishi,et al.  Deuterated SiN/SiON Waveguides on Si Platform and Their Application to C-Band WDM Filters , 2017, IEEE Photonics Journal.

[134]  Yurii A. Vlasov,et al.  Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G , 2012, IEEE Communications Magazine.

[135]  T. Ito,et al.  Pulse modulation of DH-(GaAl)As lasers , 1973 .

[136]  Masaya Notomi,et al.  Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers , 2013, Nature Photonics.

[137]  X. Bao,et al.  Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices , 2014 .

[138]  Yoshio Itoh,et al.  Room‐temperature operation of an InGaAsP double‐heterostructure laser emitting at 1.55 μm on a Si substrate , 1990 .

[139]  S. Kang,et al.  A simple rate-equation-based thermal VCSEL model , 1999 .

[140]  K. Streubel,et al.  Submilliamp long wavelength vertical cavity lasers , 1996, Conference Digest. 15th IEEE International Semiconductor Laser Conference.

[141]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[142]  T. Tsuchizawa,et al.  Low loss mode size converter from 0.3 /spl mu/m square Si wire waveguides to singlemode fibres , 2002 .

[143]  Johan S. Gustavsson,et al.  30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s , 2015 .

[144]  Yasuhiro Matsui,et al.  55 GHz Bandwidth Distributed Reflector Laser , 2017, Journal of Lightwave Technology.

[145]  Masaya Notomi,et al.  Photonic Crystal Lasers for Chip-to-Chip and On-Chip Optical Interconnects , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[146]  Yasuhiko Arakawa,et al.  Room temperature continuous-wave lasing in photonic crystal nanocavity. , 2006, Optics express.

[147]  M. Nishihara,et al.  Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF , 2014, OFC 2014.

[148]  H. Takahashi,et al.  Low loss 100 GHz spacing Si arrayed-waveguide grating using minimal terrace at slab–array interface , 2016 .

[149]  K. Oe,et al.  GaInAsP lateral current injection lasers on semi-insulating substrates , 1994, IEEE Photonics Technology Letters.

[150]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[151]  Fumio Koyama,et al.  Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light , 2011, IEICE Electron. Express.

[152]  T. Kurosaki,et al.  50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[153]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[154]  J. Bauwelinck,et al.  28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser. , 2015, Optics express.

[155]  C. Caneau,et al.  Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs–InP DBR Grown by MOCVD , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[156]  U. Gösele,et al.  A Model for the Silicon Wafer Bonding Process , 1989 .

[157]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[158]  F. Koyama,et al.  Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser , 1989 .

[159]  T. Tsuchizawa,et al.  Monolithic Integration of InP Wire and $\mbox{SiO}_x$ Waveguides on Si Platform , 2015, IEEE Photonics Journal.

[160]  Y. Suematsu,et al.  Carrier lifetime measurement of a junction laser using direct modulation , 1968 .

[161]  M. Shimbo,et al.  Silicon‐to‐silicon direct bonding method , 1986 .

[162]  Masaya Notomi,et al.  Photonic crystal lasers using wavelength-scale embedded active region , 2014 .

[163]  H. Kanbe,et al.  Zn Diffusion in InxGa1-xAs with ZnAs2 Source , 1980 .

[164]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[165]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[166]  Yuichi Matsushima,et al.  Room-temperature cw operation of distributed-feedback buried-heterostructure ingaasp/inp lasers emitting at 1.57 μm , 1981 .

[167]  C. Chang-Hasnain,et al.  Low threshold buried heterostructure vertical cavity surface emitting laser , 1993 .

[168]  Harry A. Atwater,et al.  InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation , 2003 .

[169]  Gunther Roelkens,et al.  Silicon-integrated short-wavelength hybrid-cavity VCSEL. , 2015, Optics express.

[170]  U. Feiste Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors , 1998 .

[171]  D. Caimi,et al.  Confined Epitaxial Lateral Overgrowth (CELO): A novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[172]  C. Schow,et al.  A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link , 2015, IEEE Photonics Technology Letters.

[173]  B.L. Ji,et al.  A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization , 2005, IEEE Journal of Solid-State Circuits.

[174]  Michael L Davenport,et al.  Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. , 2014, Optics express.

[175]  Kent D. Choquette,et al.  37-GHz Modulation via Resonance Tuning in Single-Mode Coherent Vertical-Cavity Laser Arrays , 2015, IEEE Photonics Technology Letters.

[176]  Yoshiyuki Doi,et al.  Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer. , 2012, Optics express.

[177]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[178]  Long Yang,et al.  Room-temperature continuous-wave operation of 1.54-μm vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.

[179]  J. Bauwelinck,et al.  56 Gb/s direct modulation of an InP-on-Si DFB laser diode , 2017, 2017 IEEE Optical Interconnects Conference (OI).

[180]  Yasuhiko Arakawa,et al.  Nonlinear gain effects in quantum well, quantum well wire, and quantum well box lasers , 1991 .

[181]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[182]  Mitsuru Ekawa,et al.  Uncooled 25 Gbit/s direct modulation of semi-insulating buried-heterostructure 1.3 μm AlGaInAs quantum-well DFB lasers , 2008 .