A mineralogical investigation into the formation of ore-barren endoskarn: An example from the Tonglushan porphyry system, eastern China

[1]  M. Chiaradia Distinct magma evolution processes control the formation of porphyry Cu–Au deposits in thin and thick arcs , 2022, Earth and Planetary Science Letters.

[2]  A. Eskdale,et al.  Economic By-Products in Copper Porphyries: Silver in the Ascutita Cu-Porphyry, Romania , 2022, Ore Geology Reviews.

[3]  J. Huntington,et al.  Mineralogy, Mineral Chemistry and SWIR Spectral Reflectance of Chlorite and White Mica , 2021, Minerals.

[4]  Jing Tian,et al.  Petrogenesis of Early Cretaceous granitoids and mafic microgranular enclaves from the giant Tonglushan Cu–Au–Fe skarn orefield, Eastern China , 2021, Lithos.

[5]  L. Diamond,et al.  Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion , 2020, Minerals.

[6]  Jing Tian,et al.  Short wavelength infrared (SWIR) spectroscopy of phyllosilicate minerals from the Tonglushan Cu-Au-Fe deposit, Eastern China: New exploration indicators for concealed skarn orebodies , 2020 .

[7]  V. Troll,et al.  Magmatic and Metasomatic Effects of Magma–Carbonate Interaction Recorded in Calc-silicate Xenoliths from Merapi Volcano (Indonesia) , 2020, Journal of Petrology.

[8]  C. Spandler,et al.  Classifying Skarns and Quantifying Metasomatism at the Antamina Deposit, Peru: Insights from Whole-Rock Geochemistry , 2020 .

[9]  Jing Tian,et al.  Unveiling growth histories of multi-generational garnet in a single skarn deposit via newly-developed LA-ICP-MS U Pb dating of grandite , 2019, Gondwana Research.

[10]  J. Mao,et al.  Mineralogy, Fluid Inclusion, and Stable Isotope Studies of the Chengchao Deposit, Hubei Province, Eastern China: Implications for the Formation of High-Grade Fe Skarn Deposits , 2019, Economic Geology.

[11]  L. Meinert,et al.  Skarn deposits of China , 2019 .

[12]  Gavin M. Mudd,et al.  Growing Global Copper Resources, Reserves and Production: Discovery Is Not the Only Control on Supply , 2018, Economic Geology.

[13]  W. Collins,et al.  Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet , 2018, Earth-Science Reviews.

[14]  R. Seltmann,et al.  Sources of fluids and metals and evolution models of skarn deposits in the Qimantagh metallogenic belt: A case study from the Weibao deposit, East Kunlun Mountains, northern Tibetan Plateau , 2018 .

[15]  Shaoyong Jiang,et al.  In situ major and trace element analysis of amphiboles in quartz monzodiorite porphyry from the Tonglvshan Cu–Fe (Au) deposit, Hubei Province, China: insights into magma evolution and related mineralization , 2017, Contributions to Mineralogy and Petrology.

[16]  Donghoon Chung,et al.  Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea , 2017 .

[17]  S. Salvi,et al.  The role of carbon dioxide in the transport and fractionation of metals by geological fluids , 2017 .

[18]  R. Dasgupta,et al.  Effect of melt composition on crustal carbonate assimilation: Implications for the transition from calcite consumption to skarnification and associated CO2 degassing , 2016 .

[19]  G. Pokrovski,et al.  Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems , 2016 .

[20]  J. Mao,et al.  Mineralogical and sulfur isotopic evidence for the incursion of evaporites in the Jinshandian skarn Fe deposit, Edong district, Eastern China , 2015 .

[21]  J. Richards The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny , 2015 .

[22]  J. Taddeucci,et al.  CO2 bubble generation and migration during magma–carbonate interaction , 2015, Contributions to Mineralogy and Petrology.

[23]  B. Tattitch,et al.  Copper partitioning between felsic melt and H2O–CO2 bearing saline fluids , 2015 .

[24]  J. Mao,et al.  Geochemical constraints on Cu–Fe and Fe skarn deposits in the Edong district, Middle–Lower Yangtze River metallogenic belt, China , 2015 .

[25]  G. Dipple,et al.  Isotope Geochemistry of the Northeast Zone, Mount Polley Alkalic Cu-Au-Ag Porphyry Deposit, British Columbia: A Case for Carbonate Assimilation , 2014 .

[26]  P. Vasconcelos,et al.  Longevity of magmatic–hydrothermal systems in the Daye Cu–Fe–Au District, eastern China with implications for mineral exploration , 2014 .

[27]  L. Su,et al.  Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: In situ LA-ICP-MS evidence , 2014 .

[28]  D. Cooke,et al.  Geochemistry of Porphyry Deposits , 2014 .

[29]  A. Vona,et al.  The geochemical evolution of clinopyroxene in the Roman Province: A window on decarbonation from wall-rocks to magma , 2013 .

[30]  Cin-Ty A. Lee,et al.  Magnesium isotope systematics of endoskarns: Implications for wallrock reaction in magma chambers , 2013 .

[31]  Li Wei Discussion on Regional Metal Mineral Deposit Model of Late Mesozoic Cu-Fe-Au Polymetallic Deposits in the Southeast Hubei Province , 2013 .

[32]  Zhehan Weng,et al.  A Detailed Assessment of Global Cu Resource Trends and Endowments * , 2013 .

[33]  C. Freda,et al.  Magma Chambers Emplaced in Carbonate Substrate: Petrogenesis of Skarn and Cumulate Rocks and Implications for CO2 Degassing in Volcanic Areas , 2012 .

[34]  Guiqing Xie,et al.  Mineral compositions and fluid evolution of the Tonglushan skarn Cu–Fe deposit, SE Hubei, east-central China , 2012 .

[35]  Zhao Haijie Skarn Mineral and Stable Isotopic Characteristics of Tonglushan Cu—Fe Deposit in Hubei Province , 2012 .

[36]  K. Kouzmanov,et al.  Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems , 2012 .

[37]  Cin-Ty A. Lee,et al.  Open-system Behavior during Pluton^Wall-rock Interaction as Constrained from a Study of Endoskarns in the Sierra Nevada Batholith, California , 2011 .

[38]  J. Richards Magmatic to hydrothermal metal fluxes in convergent and collided margins , 2011 .

[39]  J. Mao,et al.  Zircon U–Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle–Lower Yangtze River belt (MLYRB), East China , 2011 .

[40]  G. Rollinson,et al.  Characterisation of non-sulphide zinc deposits using QEMSCAN® , 2011 .

[41]  V. Troll,et al.  Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology , 2010 .

[42]  Mei-Fu Zhou,et al.  Laser ablation ICP-MS titanite U–Th–Pb dating of hydrothermal ore deposits: A case study of the Tonglushan Cu–Fe–Au skarn deposit, SE Hubei Province, China , 2010 .

[43]  R. Sillitoe Porphyry Copper Systems , 2010 .

[44]  Changqian Ma,et al.  Late Mesozoic magmatism from the Daye region, eastern China: U–Pb ages, petrogenesis, and geodynamic implications , 2009 .

[45]  M. Barton,et al.  Root Zones of Porphyry Systems: Extending the Porphyry Model to Depth , 2008 .

[46]  L. Meinert,et al.  The Empire Cu-Zn Mine, Idaho: Exploration Implications of Unusual Skarn Features Related to High Fluorine Activity , 2008 .

[47]  Changqian Ma,et al.  Origin of the Tongshankou porphyry–skarn Cu–Mo deposit, eastern Yangtze craton, Eastern China: geochronological, geochemical, and Sr–Nd–Hf isotopic constraints , 2008 .

[48]  R. Moretti,et al.  REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit , 2008 .

[49]  V. Troll,et al.  Carbonate Assimilation at Merapi Volcano, Java, Indonesia: Insights from Crystal Isotope Stratigraphy , 2007 .

[50]  Peter J. Scales,et al.  An overview of the advantages and disadvantages of the determination of gold mineralogy by automated mineralogy , 2007 .

[51]  Thomas Cudahy,et al.  Tracing fluid pathways in fossil hydrothermal systems with near-infrared spectroscopy , 2005 .

[52]  Sarah Jones,et al.  Short Wavelength Infrared Spectral Characteristics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada , 2005 .

[53]  Calvin G. Barnes,et al.  Pervasive assimilation of carbonate and silicate rocks in the Hortavær igneous complex, north-central Norway , 2005 .

[54]  M. Barton,et al.  Porphyry deposits; characteristics and origin of hypogene features , 2005 .

[55]  L. Meinert,et al.  The magmatic–hydrothermal transition—evidence from quartz phenocryst textures and endoskarn abundance in Cu–Zn skarns at the Empire Mine, Idaho, USA , 2004 .

[56]  M. Satish-Kumar,et al.  The role of aqueous silica concentration in controlling the mineralogy during high temperature contact metamorphism: A case study from Fuka contact aureole, Okayama, Japan , 2004 .

[57]  S. Ishihara,et al.  Granitoid Types Related to Cretaceous Plutonic Au‐Quartz Vein and Cu‐Fe Skarn Deposits, Kitakami Mountains, Japan , 2004 .

[58]  A. H. Clark,et al.  The Lithologic, Stratigraphic, and Structural Setting of the Giant Antamina Copper-Zinc Skarn Deposit, Ancash, Peru , 2004 .

[59]  R. Santacroce,et al.  Probing the Vesuvius magma chamber–host rock interface through xenoliths , 2004, Geological Magazine.

[60]  G. N. Phillips,et al.  Role of CO2 in the formation of gold deposits , 2004, Nature.

[61]  J. Richards Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation , 2003 .

[62]  N. Petford Controls on primary porosity and permeability development in igneous rocks , 2003, Geological Society, London, Special Publications.

[63]  E. Kislov,et al.  Partial Melting and Assimilation of Dolomitic Xenoliths by Mafic Magma: the Ioko-Dovyren Intrusion (North Baikal Region, Russia) , 2002 .

[64]  S. Salvi,et al.  Experimental study of aluminum speciation in fluoride-rich supercritical fluids , 2002 .

[65]  A. Harris,et al.  New evidence of magmatic-fluid–related phyllic alteration: Implications for the genesis of porphyry Cu deposits , 2002 .

[66]  S. Guggenheim,et al.  Mica Crystal Chemistry and the Influence of Pressure, Temperature, and Solid Solution on Atomistic Models , 2002 .

[67]  T. Mernagh,et al.  Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius , 2001 .

[68]  M. Pascal,et al.  THE MELILITE-BEARING HIGH-TEMPERATURE SKARNS OF THE APUSENI MOUNTAINS, CARPATHIANS, ROMANIA , 2001 .

[69]  Mark G. Doyle,et al.  Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland , 2001 .

[70]  A. V. D. Kerkhof,et al.  Fluid inclusion petrography , 2001 .

[71]  R. Santacroce,et al.  The skarn shell of the 1944 Vesuvius magma chamber. Genesis and P-T-X conditions from melt and fluid inclusion data , 2000 .

[72]  Yuanming Pan,et al.  The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits , 1999 .

[73]  P. Hauff,et al.  Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy , 1999, SEG Discovery.

[74]  Dave B. Mayes,et al.  Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya , 1997 .

[75]  L. Meinert Application of Skarn Deposit Zonation Models to Mineral Exploration , 1997 .

[76]  J. Seedhouse,et al.  Compositional convection caused by olivine crystallization in a synthetic basalt melt , 1996, Mineralogical Magazine.

[77]  M. Barton,et al.  Arc-related sodic hydrothermal alteration in the western United States , 1995 .

[78]  J. Dilles,et al.  Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada; a 6-km vertical reconstruction , 1992 .

[79]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[80]  R. Bodnar,et al.  Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions , 1988 .

[81]  R. Bodnar,et al.  Freezing point depression of NaCl-KCl-H 2 O solutions , 1988 .

[82]  R. B. Carten Sodium-calcium metasomatism; chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit , 1986 .

[83]  J. Allcock Skarn and porphyry copper mineralization at Mines Gaspe, Murdochville, Quebec , 1982 .

[84]  J. Iiyama,et al.  Physicochemical study of skarn formation in the Shinyama iron-copper ore deposit of the Kamaishi Mine, northeastern Japan , 1982 .

[85]  D. Burt,et al.  Introduction; terminology, classification, and composition of skarn deposits , 1982 .

[86]  J. A. Norberg,et al.  Reference Samples for Electron Microprobe Analysis , 1980 .

[87]  S. Ishihara Porphyry-type Copper Deposits in Japan (日本鉱業協会探査講演号) , 1980 .

[88]  D. Kerrick The Genesis of Zoned Skarns in the Sierra Nevada, California , 1977 .

[89]  S. Kesler Mechanisms of magmatic assimilation at a marble contact, northern Haiti , 1968 .