Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase

Abstract This paper completes a study the ultimate objective of which was to provide background information on biomass pyrolysis oils (bio-oils) regarding their use as a gas turbine liquid fuel. The bio-oil was obtained by vacuum pyrolysis of softwood bark residues. The stability and ageing of the bio-oil and mixtures thereof were evaluated. The samples were stored at 40, 50 and 80°C for up to 168 h and at room temperature for up to one year, period after which the phase separation time, viscosity, solid and water content and average molecular weight were measured. The results indicated that the properties of the bio-oil were significantly altered when the bio-oil was heated at 80°C, but that the variations after heating at 40 and 50°C were not critical. It was found that the molecular weight increase after heating the bio-oil for one week at 80°C was equivalent to keeping the sample for one year at room temperature. The addition of aqueous phase to the bio-oil lowered its thermal stability significantly. A rapid phase separation occurred after heating at 80°C and, therefore, the total aqueous phase concentration in the bio-oil must be limited to 15%. Ageing of the raw bio-oil at room temperature resulted in a dramatic viscosity increase during the first 65 days, period after which a plateau was reached. The addition of methanol to the bio-oil was beneficial for the bio-oil properties as well as for the stability of the bio-oil and its mixtures. Methanol dissolved some structured components of the bio-oil and thus reduced the viscosity increase rate. Moreover, the addition of methanol to the bio-oil/pyrolytic aqueous phase mixtures delayed the phase separation process.