Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm

[1]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  J. A. Anderson,et al.  Logistic Discrimination and Bias Correction in Maximum Likelihood Estimation , 1979 .

[3]  G. McLachlan A Note On Bias Correction in Maximum Likelihood Estimation with Logistic Discrimination , 1980 .

[4]  R. Schaefer,et al.  A ridge logistic estimator , 1984 .

[5]  A. Albert,et al.  On the existence of maximum likelihood estimates in logistic regression models , 1984 .

[6]  R. Schaefer Bias correction in maximum likelihood logistic regression. , 1985, Statistics in medicine.

[7]  B. Efron How Biased is the Apparent Error Rate of a Prediction Rule , 1986 .

[8]  J. Copas Binary Regression Models for Contaminated Data , 1988 .

[9]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[10]  P. McCullagh,et al.  Bias Correction in Generalized Linear Models , 1991 .

[11]  Purushottam W. Laud,et al.  On Bayesian Analysis of Generalized Linear Models Using Jeffreys's Prior , 1991 .

[12]  Gerhard Tutz,et al.  Advances in GLIM and Statistical Modelling , 1992 .

[13]  David Firth,et al.  Bias reduction, the Jeffreys prior and GLIM , 1992 .

[14]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[15]  D. Firth Bias reduction of maximum likelihood estimates , 1993 .

[16]  Jiming Jiang,et al.  Conditional inference about generalized linear mixed models , 1999 .

[17]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[18]  M. Schemper,et al.  A solution to the problem of separation in logistic regression , 2002, Statistics in medicine.

[19]  Celia M. T. Greenwood,et al.  A modified score function estimator for multinomial logistic regression in small samples , 2002 .

[20]  Gersende Fort,et al.  Classification using partial least squares with penalized logistic regression , 2005, Bioinform..

[21]  Sujuan Gao,et al.  A Solution to Separation and Multicollinearity in Multiple Logistic Regression. , 2008, Journal of data science : JDS.