Part-Based Tracking by Sampling

We propose a novel part-based method for tracking an arbitrary object in challenging video sequences. The colour distribution of tracked image patches on the target object are represented by pairs of RGB samples and counts of how many pixels in the patch are similar to them. Patches are placed by segmenting the object in the given bounding box and placing patches in homogeneous regions of the object. These are located in subsequent image frames by applying non-shearing affine transformations to the patches' previous locations, locally optimising the best of these, and evaluating their quality using a modified Bhattacharyya distance. In experiments carried out on VOT2018 and OTB100 benchmarks, the tracker achieves higher performance than all other part-based trackers. An ablation study is used to reveal the effectiveness of each tracking component, with largest performance gains found when using the patch placement scheme.

[1]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[2]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Walter G. Kropatsch,et al.  Multi-scale 2D tracking of articulated objects using hierarchical spring systems , 2011, Pattern Recognit..

[4]  Jinhai Xiang,et al.  Robust Visual Tracking via Local-Global Correlation Filter , 2017, AAAI.

[5]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[7]  Wei Wu,et al.  High Performance Visual Tracking with Siamese Region Proposal Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Qi Tian,et al.  Geometric Hypergraph Learning for Visual Tracking , 2016, IEEE Transactions on Cybernetics.

[9]  Aykut Erdem,et al.  Deformable part-based tracking by coupled global and local correlation filters , 2016, J. Vis. Commun. Image Represent..

[10]  Ales Leonardis,et al.  Robust visual tracking using template anchors , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[11]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[13]  Jiri Matas,et al.  The Enhanced Flock of Trackers , 2014, Registration and Recognition in Images and Videos.

[14]  Alfredo Petrosino,et al.  Watch Out: Embedded Video Tracking with BST for Unmanned Aerial Vehicles , 2018, J. Signal Process. Syst..

[15]  Nuno Vasconcelos,et al.  Robust Deformable and Occluded Object Tracking With Dynamic Graph , 2014, IEEE Transactions on Image Processing.

[16]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[17]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[18]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[19]  Josef Kittler,et al.  Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Object Tracking , 2018, IEEE Transactions on Image Processing.

[20]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Matej Kristan,et al.  Deformable Parts Correlation Filters for Robust Visual Tracking , 2016, IEEE Transactions on Cybernetics.

[22]  Alfredo Petrosino,et al.  MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning , 2013, ICIAP.

[23]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Bob Zhang,et al.  Background modeling methods in video analysis: A review and comparative evaluation , 2016, CAAI Trans. Intell. Technol..

[25]  Qingming Huang,et al.  Online Deformable Object Tracking Based on Structure-Aware Hyper-Graph , 2016, IEEE Transactions on Image Processing.

[26]  Tony P. Pridmore,et al.  TRIC-track: Tracking by Regression with Incrementally Learned Cascades , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[27]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[28]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[29]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Hanqing Lu,et al.  Weighted Part Context Learning for Visual Tracking , 2015, IEEE Transactions on Image Processing.

[32]  Fatih Murat Porikli,et al.  Achieving real-time object detection and tracking under extreme conditions , 2006, Journal of Real-Time Image Processing.

[33]  Sachin Sakhare,et al.  Image processing techniques for object tracking in video surveillance- A survey , 2015, 2015 International Conference on Pervasive Computing (ICPC).

[34]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[35]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[36]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[37]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Bastian Leibe,et al.  Superpixels: An evaluation of the state-of-the-art , 2016, Comput. Vis. Image Underst..

[39]  Junseok Kwon,et al.  Tracking by Sampling and IntegratingMultiple Trackers , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[41]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Junseok Kwon,et al.  Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling , 2009, CVPR.

[43]  Richard Everson,et al.  Visual Object Tracking: The Initialisation Problem , 2018, 2018 15th Conference on Computer and Robot Vision (CRV).

[44]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[45]  Zhe Chen,et al.  An Experimental Survey on Correlation Filter-based Tracking , 2015, ArXiv.

[46]  Alfredo Petrosino,et al.  Clustering Local Motion Estimates for Robust and Efficient Object Tracking , 2014, ECCV Workshops.

[47]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[48]  Michael Felsberg,et al.  DCCO: Towards Deformable Continuous Convolution Operators for Visual Tracking , 2017, CAIP.

[49]  Ales Leonardis,et al.  Single target tracking using adaptive clustered decision trees and dynamic multi-level appearance models , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Ales Leonardis,et al.  Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[52]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  E. Hellinger,et al.  Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .

[54]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[55]  Andrea Cavallaro,et al.  Accepted for Publication in Ieee Transactions on Image Processing Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation , 2022 .

[56]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[57]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[59]  Ming-Hsuan Yang,et al.  Learning Spatial-Aware Regressions for Visual Tracking , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[60]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[61]  Yanning Zhang,et al.  Real-Time Correlation Filter Tracking by Efficient Dense Belief Propagation With Structure Preserving , 2017, IEEE Transactions on Multimedia.

[62]  G De Ath,et al.  Object tracking in video with part-based tracking by feature sampling , 2019 .

[63]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Jin Young Choi,et al.  Visual tracking of non-rigid objects with partial occlusion through elastic structure of local patches and hierarchical diffusion , 2015, Image Vis. Comput..

[65]  Gang Wang,et al.  Learning deep features for multiple object tracking by using a multi-task learning strategy , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[66]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..