Atomistic simulations as guidance to experiments

Abstract Atomistic simulations have provided unprecedented insight into the structural and mechanical properties of nanocrystalline materials. However the extrapolation of this knowledge to the experimental regime requires a clear understanding of the temporal and spatial scales of the modeling technique and a detailed structural characterisation of the simulated samples.

[1]  K. Lu,et al.  Low temperature creep of nanocrystalline pure copper , 2000 .

[2]  Simon R. Phillpot,et al.  Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation , 2001 .

[3]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[4]  H. Van Swygenhoven,et al.  Free volume in nanostructured Ni , 2003 .

[5]  H. V. Swygenhoven,et al.  Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni , 1999 .

[6]  H. Van Swygenhoven,et al.  Dimples on Nanocrystalline Fracture Surfaces As Evidence for Shear Plane Formation , 2003, Science.

[7]  S. Phillpot,et al.  Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation , 2002 .

[8]  S. Phillpot,et al.  Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation , 1999 .

[9]  H. V. Swygenhoven,et al.  On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation , 2002 .

[10]  Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials , 2002, cond-mat/0207312.

[11]  H. V. Swygenhoven,et al.  PLASTIC BEHAVIOR OF NANOPHASE METALS STUDIED BY MOLECULAR DYNAMICS , 1998 .

[12]  Peter M. Derlet,et al.  Length scale effects in the simulation of deformation properties of nanocrystalline metals , 2002 .

[13]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[14]  Peter M. Derlet,et al.  Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation , 2002 .

[15]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[16]  M. Hou,et al.  Atomic-scale modeling of cluster-assembled (formula presented) thin films , 2002 .

[17]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[18]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[19]  H. V. Swygenhoven,et al.  Atomic mechanism for dislocation emission from nanosized grain boundaries , 2002 .

[20]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[21]  Alfredo Caro,et al.  Grain-boundary structures in polycrystalline metals at the nanoscale , 2000 .

[22]  H. V. Swygenhoven,et al.  Atomic positional disorder in fcc metal nanocrystalline grain boundaries , 2003 .

[23]  M. Mayo,et al.  Materials Research Society Symposium Proceedings Volume 634 Structure and Mechanical Properties of Nanophase Materials - Theory and Computer Simulation vs. Experiment , 2000 .

[24]  T. J. Delph,et al.  Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .