ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. I. OPTICAL AND NEAR-INFRARED PERIOD–LUMINOSITY AND PERIOD–WESENHEIT RELATIONS

We present new distance determinations to the nearby globular M4 (NGC~6121) based on accurate optical and Near Infrared (NIR) mean magnitudes for fundamental (FU) and first overtone (FO) RR Lyrae variables (RRLs), and new empirical optical and NIR Period-Luminosity (PL) and Period-Wesenheit (PW) relations. We have found that optical-NIR and NIR PL and PW relations are affected by smaller standard deviations than optical relations. The difference is the consequence of a steady decrease in the intrinsic spread of cluster RRL apparent magnitudes at fixed period as longer wavelengths are considered. The weighted mean visual apparent magnitude of 44 cluster RRLs is $\left =13.329\pm0.001$ (standard error of the mean) $\pm$0.177 (weighted standard deviation) mag. Distances were estimated using RR Lyr itself to fix the zero-point of the empirical PL and PW relations. Using the entire sample (FU$+$FO) we found weighted mean true distance moduli of 11.35$\pm$0.03$\pm$0.05 mag and 11.32$\pm$0.02$\pm$0.07 mag. Distances were also evaluated using predicted metallicity dependent PLZ and PWZ relations. We found weighted mean true distance moduli of 11.283$\pm$0.010$\pm$0.018 mag (NIR PLZ) and 11.272$\pm$0.005$\pm$0.019 mag (optical--NIR and NIR PWZ). The above weighted mean true distance moduli agree within 1$\sigma$. The same result is found from distances based on PWZ relations in which the color index is independent of the adopted magnitude (11.272$\pm$0.004$\pm$0.013 mag). These distances agree quite well with the geometric distance provided by \citep{kaluzny2013} based on three eclipsing binaries. The available evidence indicates that this approach can provide distances to globulars hosting RRLs with a precision better than 2--3\%.

[1]  BVRI photoelectric photometry and radial velocity data for four RR Lyrae stars in the globular cluster NGC 6121: the strange case of V15 , 1994 .

[2]  D. Mcnamara DELTA SCUTI, SX PHOENICIS, AND RR LYRAE STARS IN GALAXIES AND GLOBULAR CLUSTERS , 2011 .

[3]  P. Green INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY , 2013, 1301.4264.

[4]  A. Dotter,et al.  COMPARING THE WHITE DWARF COOLING SEQUENCES IN 47 Tuc AND NGC 6397 , 2013, 1310.0111.

[5]  G. Piotto,et al.  THE END OF THE WHITE DWARF COOLING SEQUENCE IN M4: AN EFFICIENT APPROACH , 2009, 0903.2839.

[6]  S. Cassisi,et al.  The Initial Mass Function of the Galactic Bulge down to ~0.15 M☉ , 1999, astro-ph/9906452.

[7]  Thanu Padmanabhan,et al.  Stars and stellar systems , 2001 .

[8]  Massimo Dall'Ora,et al.  A NEW REDDENING LAW FOR M4 , 2012, 1204.5719.

[9]  Santi Cassisi,et al.  The BaSTI Stellar Evolution Database: models for extremely metal-poor and super-metal-rich stellar populations , 2013, 1308.3850.

[10]  White Dwarfs in Globular Clusters: Hubble Space Telescope Observations of M4* , 1997, astro-ph/9702169.

[11]  W. V. Altena,et al.  SPACE VELOCITIES OF SOUTHERN GLOBULAR CLUSTERS. VII. NGC 6397, NGC 6626 (M28), AND NGC 6656 (M22) , 2013, 1305.7431.

[12]  Variable Stars in the Globular Cluster NGC 6752 , 1999 .

[13]  Don A. VandenBerg,et al.  The bifurcated age–metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy , 2013, 1309.0822.

[14]  Richard de Grijs,et al.  Advancing the Physics of Cosmic Distances: Conference Summary , 2012, 1209.6529.

[15]  M. Salaris Distance indicators from colour-magnitude-diagrams: main sequence, red clump and tip of the RGB , 2012 .

[16]  A. Longmore,et al.  Fundamental parameters for M4, the nearest globular cluster , 1993 .

[17]  M. Feast,et al.  Period–luminosity relations for type II Cepheids and their application , 2009, 0904.4701.

[18]  G. S. Burley,et al.  THE CLUSTER AGES EXPERIMENT (CASE). V. ANALYSIS OF THREE ECLIPSING BINARIES IN THE GLOBULAR CLUSTER M4 , 2013, 1301.2946.

[19]  R. Rood,et al.  Rotation and Oxygen Line Strengths in Blue Horizontal-Branch Stars , 1995 .

[20]  G. Altavilla,et al.  The double red giant branch in M2: C, N, Sr and Ba abundances , 2013, 1305.3181.

[21]  A. Sarajedini,et al.  Deep Photometry of the Globular Cluster M5: Distance Estimates from White Dwarf and Main-Sequence Stars , 2005, astro-ph/0506727.

[22]  S. Cassisi,et al.  RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions , 2004 .

[23]  A. Marín-Franch,et al.  The ACS survey of Galactic globular clusters , 2012 .

[24]  R. Cohen,et al.  SX Phoenicis period–luminosity relations and the blue straggler connection , 2012 .

[25]  A. Saha,et al.  Oscillating Blue Stragglers in the Core of 47 Tucanae , 1998 .

[26]  A. Gould,et al.  AN ASYMMETRIC STREAMING MOTION IN THE GALACTIC BULGE X-SHAPED STRUCTURE REVEALED BY OGLE-III PROPER MOTIONS , 2013, 1304.6084.

[27]  Bruce W. Carney,et al.  The Baade-Wesselink Method and the Distances to RR Lyrae Stars. VIII. Comparisons with Other Techniques and Implications for Globular Cluster Distances and Ages , 1992 .

[28]  G. Piotto,et al.  Spectroscopic and photometric evidence of two stellar populations in the Galactic globular cluster NGC 6121 (M 4) , 2008, 0808.1414.

[29]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[30]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[31]  A. Dotter,et al.  GLOBULAR CLUSTERS IN THE OUTER GALACTIC HALO: NEW HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS IMAGING OF SIX GLOBULAR CLUSTERS AND THE GALACTIC GLOBULAR CLUSTER AGE–METALLICITY RELATION , 2011, 1106.4307.

[32]  Dana I. Casetti-Dinescu,et al.  Proper Motions in the Galactic Bulge: Plaut’s Window , 2007, Proceedings of the International Astronomical Union.

[33]  Wendy L. Freedman,et al.  A PRELIMINARY CALIBRATION OF THE RR LYRAE PERIOD–LUMINOSITY RELATION AT MID-INFRARED WAVELENGTHS: WISE DATA , 2013, 1308.3160.

[34]  W. Gieren,et al.  Identifying Contaminated K-Band Globular Cluster RR Lyrae Photometry , 2012, 1209.0762.

[35]  W. Jefferys,et al.  Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae , 2001, astro-ph/0110271.

[36]  M. Feast,et al.  Globular clusters and the Mira period–luminosity relation , 2001, astro-ph/0111108.

[37]  Nathaniel R. Butler,et al.  Mid-infrared period–luminosity relations of RR Lyrae stars derived from the AllWISE Data Release , 2014, 1402.4449.

[38]  R. Zinn Globular cluster system of the galaxy. I. The metal abundances and reddenings of 79 globular clusters from integrated light measurements , 1980 .

[39]  Adriano Pietrinferni,et al.  ON THE PERIOD DISTRIBUTION OF CLUSTER RR LYRAE STARS TO CONSTRAIN THEIR HELIUM CONTENT: THE CASE OF ω CENTAURI , 2011, 1106.4931.

[40]  G. Bono,et al.  Theoretical insights into the RR Lyrae K-band period–luminosity relation , 2001 .

[41]  J. Anderson,et al.  A WFC3/HST VIEW OF THE THREE STELLAR POPULATIONS IN THE GLOBULAR CLUSTER NGC 6752 , 2013, 1301.7044.

[42]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .

[43]  Bruce W. Carney,et al.  TEMPLATE K LIGHT CURVES FOR RR LYRAE STARS , 1996 .

[44]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[45]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[46]  J. Benkő,et al.  Multicolour CCD photometry of the variable stars in globular cluster M3 , 2006, astro-ph/0608409.

[47]  Giampaolo Piotto,et al.  ATMOSPHERIC PARAMETERS AND METALLICITIES FOR 2191 STARS IN THE GLOBULAR CLUSTER M4 , 2013, The Astronomical Journal.

[48]  R. Rich,et al.  The White Dwarf Distance to the Globular Cluster 47 Tucanae and its Age , 2001, astro-ph/0101485.

[49]  V. Ripepi,et al.  Distance to Galactic globulars using the near‐infrared magnitudes of RR Lyrae stars – IV. The case of M5 (NGC 5904) , 2011, 1105.4031.

[50]  R. Kudritzki,et al.  The Araucaria Project: The Distance to the Sculptor Group Galaxy NGC 55 from a Newly Discovered Abundant Cepheid Population , 2006, astro-ph/0610595.

[51]  G. Fiorentino,et al.  Cepheid theoretical models and observations in HST/WFC3 filters: the effect on the Hubble constant H0 , 2013, 1306.6276.

[52]  Italy,et al.  Merging of Globular Clusters in Inner Galactic Regions. II. Nuclear Star Cluster Formation , 2008, 0801.1072.

[53]  Galactic Globular Cluster Relative Ages , 1999, astro-ph/0503594.

[54]  R. Rich,et al.  High resolution near-IR spectra of NGC 6624 and NGC 6569 , 2011, 1103.0233.

[55]  M. Davies,et al.  The formation of very wide binaries during the star cluster dissolution phase , 2010, 1001.3969.

[56]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[57]  H. Bond,et al.  HD 140283: A STAR IN THE SOLAR NEIGHBORHOOD THAT FORMED SHORTLY AFTER THE BIG BANG , 2013, 1302.3180.

[58]  E. Baron,et al.  The ACS Survey of Galactic Globular Clusters. II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models , 2007, 0706.0847.

[59]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. RELATIVE AGES , 2008, 0812.4541.

[60]  D. VandenBerg,et al.  Canonical Extra Mixing in Low-Mass Red Giants , 2003 .

[61]  Michael J. West,et al.  The globular cluster system of the Galaxy. III: measurements of radial velocity and metallicity for 60 clusters and a compilation of metallicities for 121 clusters , 1984 .

[62]  M. Nonino,et al.  On a New Parameter to Estimate the Helium Content in Old Stellar Systems , 2011, 1106.2734.

[63]  M. Castellani,et al.  A Pulsational Distance to ω Centauri Based on Near-Infrared Period-Luminosity Relations of RR Lyrae Stars , 2006, astro-ph/0608052.

[64]  V. Ripepi,et al.  Pulsational MV versus [Fe/H] relation(s) for globular cluster RR Lyrae variables , 2000, astro-ph/0003473.

[65]  Robert F. Stellingwerf,et al.  Pulsation and stability of RR Lyrae stars. 1: Instability strip , 1994 .

[66]  M. Marconi,et al.  On the pulsation parallax of the variable star RR Lyr , 2002, astro-ph/0204243.

[67]  Garching,et al.  Intrinsic iron spread and a new metallicity scale for globular clusters , 2009, 0910.0675.

[68]  S. Hodson,et al.  Double-mode RR Lyrae variables in M15. , 1983 .

[69]  Luca Casagrande,et al.  THE AGES OF 55 GLOBULAR CLUSTERS AS DETERMINED USING AN IMPROVED METHOD ALONG WITH COLOR–MAGNITUDE DIAGRAM CONSTRAINTS, AND THEIR IMPLICATIONS FOR BROADER ISSUES , 2013, 1308.2257.

[70]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution , 2006 .

[71]  M. Dolci,et al.  Near-Infrared Observations of RR Lyrae Variables in Galactic Globular Clusters. I. The Case of M92 , 2005, astro-ph/0503140.

[72]  T. Barnes,et al.  An in-depth spectroscopic analysis of the Blazhko star RR Lyrae - I. Characterisation of the star: abundance analysis and fundamental parameters , 2010, 1004.5156.

[73]  D. Herrera,et al.  Space Velocities of Southern Globular Clusters. V. A Low Galactic Latitude Sample , 2007, 0705.3438.

[74]  Concerning the White Dwarf Cooling Age of M4: A Reply to De Marchi et al. on “A Different Interpretation of Recent Deep HST Observations”* , 2004, astro-ph/0401446.

[75]  P. Ho,et al.  SPATIALLY RESOLVING SUBSTRUCTURES WITHIN THE MASSIVE ENVELOPE AROUND AN INTERMEDIATE-MASS PROTOSTAR: MMS 6/OMC-3 , 2012, 1204.2543.

[76]  B. Carney,et al.  The Baade-Wesselink method and the distances to RR Lyrae stars. VI: The field stars RS Bootis, TW Herculis, VY Serpentis, and UU Virginis, and the absolute magnitudes of RR Lyrae stars , 1988 .

[77]  I. Ivans,et al.  A Globular Cluster Metallicity Scale Based on the Abundance of Feii , 2002, astro-ph/0305380.

[78]  M. Marconi,et al.  INSIGHTS INTO THE CEPHEID DISTANCE SCALE , 2010, 1004.0363.

[79]  K. Janes,et al.  The luminosity scale of RR Lyrae stars with the Baade-Wesselink method. II. The absolute magnitudes of 13 field RR Lyrae stars , 1990 .

[80]  S. Andrievsky,et al.  KP Cyg: An Unusual Metal-Rich RR Lyr Type Star of Long Period , 2010, 1006.0511.

[81]  R. Stellingwerf,et al.  ON THE APPLICATION OF THE BAADE-WESSELINK METHOD TO RR LYRAE STARS , 1994 .

[82]  B. Carney,et al.  The Rotation of RR Lyrae Stars , 1996 .

[83]  A. Dotter,et al.  MODELS FOR METAL-POOR STARS WITH ENHANCED ABUNDANCES OF C, N, O, Ne, Na, Mg, Si, S, Ca, AND Ti, IN TURN, AT CONSTANT HELIUM AND IRON ABUNDANCES , 2012, 1206.1820.

[84]  V. M. Larionov,et al.  The infrared JHK light curves of RR Lyr , 2007, 0712.0578.

[85]  M. Marconi,et al.  Cepheids in External Galaxies. I. The Maser-Host Galaxy NGC 4258 and the Metallicity Dependence of Period-Luminosity and Period-Wesenheit Relations , 2008, 0805.1592.

[86]  The Initial Helium Abundance of the Galactic Globular Cluster System , 2004, astro-ph/0403600.

[87]  E. Valenti,et al.  The RR Lyrae period–K-luminosity relation for globular clusters: an observational approach★ , 2006, astro-ph/0608397.

[88]  European Southern Observatory,et al.  ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL–NIR PERIOD–WESENHEIT RELATIONS , 2012, 1212.4376.

[89]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[90]  R. Rood Metal-poor stars. V. Horizontal-branch morphology , 1973 .

[91]  Peter B. Stetson,et al.  Homogeneous Photometry for Star Clusters and Resolved Galaxies. II. Photometric Standard Stars , 2000 .

[92]  C. Kobayashi,et al.  METALLICITY DISTRIBUTION FUNCTIONS, RADIAL VELOCITIES, AND ALPHA ELEMENT ABUNDANCES IN THREE OFF-AXIS BULGE FIELDS , 2013, 1302.3679.

[93]  The Baade-Wesselink p-factor applicable to LMC Cepheids ⋆ , 2011, 1109.6763.

[94]  M. Nonino,et al.  ON THE DENSITY PROFILE OF THE GLOBULAR CLUSTER M92 , 2013, 1302.1714.

[95]  S. Cassisi,et al.  Updated Electron-Conduction Opacities: The Impact on Low-Mass Stellar Models , 2007 .

[96]  THE GIANT, HORIZONTAL, AND ASYMPTOTIC BRANCHES OF GALACTIC GLOBULAR CLUSTERS. I. THE CATALOG, PHOTOMETRIC OBSERVABLES, AND FEATURES , 1999, astro-ph/9906248.

[97]  M. Dall'Ora,et al.  Optical and Near-Infrared UBVRIJHK Photometry for the RR Lyrae Stars in the Nearby Globular Cluster M4 (NGC 6121) , 2014, 1406.7531.

[98]  I. Skillen,et al.  Globular cluster distances from the RR Lyrae log(period) - infrared magnitude relation. , 1990 .

[99]  G. S. Burley,et al.  THE CLUSTER AGES EXPERIMENT (CASE). IV. ANALYSIS OF THE ECLIPSING BINARY V69 IN THE GLOBULAR CLUSTER 47 Tuc , 2009, 0910.4262.

[100]  E. Marchetti,et al.  ON A NEW NEAR-INFRARED METHOD TO ESTIMATE THE ABSOLUTE AGES OF STAR CLUSTERS: NGC 3201 AS A FIRST TEST CASE , 2009, 0912.0824.

[101]  C. Sneden,et al.  CHARACTERIZING THE HEAVY ELEMENTS IN GLOBULAR CLUSTER M22 AND AN EMPIRICAL s-PROCESS ABUNDANCE DISTRIBUTION DERIVED FROM THE TWO STELLAR GROUPS , 2011, 1108.3868.

[102]  M. Nonino,et al.  On the Relative Distances of ω Centauri and 47 Tucanae , 2008, 0809.0863.

[103]  G. Bono,et al.  Predicted and Empirical Radii of RR Lyrae Stars , 2005, astro-ph/0503382.

[104]  Nicole Nesvacil,et al.  DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES , 2011, 1109.5631.

[105]  M. Catelan,et al.  The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration , 2004, astro-ph/0406067.

[106]  S. Degl'Innocenti,et al.  A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars , 2003 .

[107]  W. Gieren,et al.  THE IMPACT OF CONTAMINATED RR LYRAE/GLOBULAR CLUSTER PHOTOMETRY ON THE DISTANCE SCALE , 2012, 1205.0255.

[108]  Hubble Space Telescope Observations of the White Dwarf Cooling Sequence of M4 , 2004, astro-ph/0401443.

[109]  Kenneth A. Janes,et al.  The Luminosity Scale of RR Lyrae Stars with the Baade-Wesselink Method. III. The Absolute Magnitudes of Four RR Lyrae Stars in the Globular Cluster M4 , 1990 .

[110]  A. J. Longmore,et al.  RR Lyrae stars in globular clusters : better distances from infrared measurements ? , 1986 .

[111]  Ata Sarajedini,et al.  The ACS Survey of Galactic Globular Clusters. I. Overview and Clusters without Previous Hubble Space Telescope Photometry , 2006, astro-ph/0612598.

[112]  L. Greggio,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2003 .

[113]  Peter B. Stetson,et al.  Ages for Globular Clusters in the Outer Galactic Halo: The Second-Parameter Clusters Palomar 3, Palomar 4, and Eridanus , 1998, astro-ph/9809176.

[114]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[115]  V. Ripepi,et al.  The distance to the LMC cluster Reticulum from the K-band Period-Luminosity-Metallicity relation of RR Lyrae stars , 2004 .

[116]  G. Clementini,et al.  A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419 , 2010, 1011.5398.

[117]  P. Stetson Homogeneous Photometry. IV. On the Standard Sequence in the Globular Cluster NGC 2419 , 2005, astro-ph/0503393.

[118]  K. Kolenberg,et al.  The Blazhko effect of RR lyrae in 2003-2004 , 2006 .

[119]  Denmark,et al.  Distances and ages of NGC 6397, NGC 6752 and 47 Tuc , 2003, astro-ph/0307016.