Beyond NP: Arc-Consistency for Quantified Constraints

The generalization of the satisfiability problem with arbitrary quantifiers is a challenging problem of both theoretical and practical relevance. Being PSPACE-complete, it provides a canonical model for solving other PSPACE tasks which naturally arise in AI.Effective SAT-based solvers have been designed very recently for the special case of boolean constraints. We propose to consider the more general problem where constraints are arbitrary relations over finite domains. Adopting the viewpoint of constraint-propagation techniques so successful for CSPs, we provide a theoretical study of this problem. Our main result is to propose quantified arc-consistency as a natural extension of the classical CSP notion.

[1]  Tomás Lozano-Pérez,et al.  Extending the constraint propagation of intervals , 1989, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[2]  Jos,et al.  The Complexity of Searching Implicit Graphs , 1996 .

[3]  Stefan Ratschan,et al.  Continuous First-Order Constraint Satisfaction , 2002, AISC.

[4]  Frédéric Goualard,et al.  Universally Quantified Interval Constraints , 2000, CP.

[5]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[6]  Toby Walsh,et al.  Beyond NP: the QSAT phase transition , 1999, AAAI/IAAI.

[7]  Philippe Codognet,et al.  Compiling Constraints in clp(FD) , 1996, J. Log. Program..

[8]  Krzysztof R. Apt,et al.  The Essence of Constraint Propagation , 1998, Theor. Comput. Sci..

[9]  Krzysztof R. Apt,et al.  Automatic Generation of Constraint Propagation Algorithms for Small Finite Domains , 1999, CP.

[10]  Thom W. Frühwirth,et al.  Theory and Practice of Constraint Handling Rules , 1998, J. Log. Program..

[11]  Jussi Rintanen,et al.  Improvements to the Evaluation of Quantified Boolean Formulae , 1999, IJCAI.

[12]  Peter van Beek,et al.  Local and Global Relational Consistency , 1995, Theor. Comput. Sci..

[13]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[14]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[15]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.

[16]  Thomas J. Schaefer,et al.  Complexity of decision problems based on finite two-person perfect-information games , 1976, STOC '76.

[17]  Thomas J. Schaefer,et al.  On the Complexity of Some Two-Person Perfect-Information Games , 1978, J. Comput. Syst. Sci..

[18]  Armando Tacchella,et al.  Learning for quantified boolean logic satisfiability , 2002, AAAI/IAAI.

[19]  Hans Kleine Büning,et al.  Resolution for Quantified Boolean Formulas , 1995, Inf. Comput..

[20]  Thi-Bich-Hanh Dao,et al.  Expressiveness of Full First-Order Constraints in the Algebra of Finite or Infinite Trees , 2000, Constraints.

[21]  Stefan Woltran,et al.  Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas , 2000, AAAI/IAAI.