New copper(II)-centered complexes with organometallic donor–acceptor substituted unsymmetrical Schiff base ligands

The synthesis and full characterization using various spectroscopic techniques and single-crystal X-ray diffraction analysis of a family of three robust copper(II)-centered complexes with organometallic donor–acceptor substituted unsymmetrical Schiff base ligands, namely, the binuclear derivatives Cu[Fc–C(O)CHC(CH3)N–X–NCH-(2-O,5-Br–C6H3)] (3: X = o-C6H4, 4: X = CH2CH2), and the corresponding ionic trinuclear counterpart of 4, [Cu{Fc–C(O)CHC(CH3)N–CH2CH2–NCH-(η6-2-O,5-Br–C6H3)RuCp*}][PF6] (5) (Fc = (η5-C5H5)Fe(η5-C5H4), Cp* = η5-C5Me5), have been explored. Single crystal X-ray diffraction analysis of complex 3 indicates a bowed structure of the unsymmetrical Schiff base scaffold. The Cu2+ ion is tetracoordinated in a square planar environment, with two nitrogen atoms and two oxygen atoms as donors. The EPR spectra of solid trinuclear complexes 5 and 7 (unsubstituted salicylidene ring and X = o-C6H4) at low temperature (68 K) consisted of fine-structure transitions (ΔMs = ±1) with zero-field splitting (ZFS) values of 0.0458 and 0.0415 cm−1, respectively, and a half-field signal (ΔMs = ±2) at ca. 1600 G, suggesting the formation of dimeric species (S = 1). In those dimers, Cu–Cu distances of 3.97 and 4.14 A, respectively, are computed from ZFS terms. The variable-temperature (2–300 K) magnetic susceptibilities of powdered samples of 5 and 7 have been measured, and an intermolecular antiferromagnetic interaction with exchange couplings of J = −1.05 and −0.65 cm−1, respectively, were found. The electrochemical behavior of both the neutral binuclear and ionic trinuclear compounds was investigated by cyclic voltammetry. Notably, the ability of the copper Schiff base core to transmit electronic effects between the two organometallic termini has been demonstrated by the observed anodic shift of the reversible voltammetric signal ascribed to the FeII/FeIII couple of the ferrocenyl donor fragment.

[1]  Arjan W. Kleij,et al.  Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. , 2010, Angewandte Chemie.

[2]  C. Hong,et al.  Crystal Structures and Magnetic Properties of Newly Synthesized Mono‐ and Dinuclear CuII Schiff‐Base Complexes , 2010 .

[3]  M. Boero,et al.  From Salicylaldehyde to Chiral Salen Sulfonates – Syntheses, Structures and Properties of New Transition Metal Complexes Derived from Sulfonato Salen Ligands , 2010 .

[4]  É. Deunf,et al.  Synthesis and Electrochemical Study of an Original Copper(II)‐Capped Salen–Cyclodextrin Complex , 2010 .

[5]  A. Dalla Cort,et al.  Metal-salophen-based receptors for anions. , 2010, Chemical Society reviews.

[6]  Arjan W. Kleij,et al.  Isolation and characterization of a new type of mu-hydroxo-bis-Zn(salphen) assembly. , 2010, Dalton transactions.

[7]  A. Bhaumik,et al.  Click on silica: systematic immobilization of Co(II) Schiff bases to the mesoporous silica via click reaction and their catalytic activity for aerobic oxidation of alcohols. , 2010, Dalton transactions.

[8]  M. Salavati‐Niasari,et al.  Synthesis, characterization and catalytic oxidation of para-xylene by a manganese(III) Schiff base complex on functionalized multi-wall carbon nanotubes (MWNTs). , 2010, Dalton transactions.

[9]  M. Mellah,et al.  Recoverable chiral salen complexes for asymmetric catalysis: recent progress. , 2010, Dalton transactions.

[10]  T. Carell,et al.  Antiferromagnetic coupling of stacked Cu(II)-salen complexes in DNA. , 2010, Angewandte Chemie.

[11]  E. Hey‐Hawkins,et al.  Soluble monometallic salen complexes derived from O-functionalised diamines as metalloligands for the synthesis of heterobimetallic complexes. , 2010, Dalton transactions.

[12]  Arjan W. Kleij,et al.  Cooperative multimetallic catalysis using metallosalens. , 2010, Chemical communications.

[13]  J. Zagal,et al.  Substituent Effects on Structural, Electronic, and Redox Properties of Bis(N‐alkyl‐2‐oxy‐1‐naphthaldiminato)copper(II) Complexes Revisited – Inequivalence in Solid‐ and Solution‐State Structures by Electronic Spectroscopy and X‐ray Diffraction Explained by DFT , 2010 .

[14]  M. Drew,et al.  Nickel(II) and copper(II) complexes of unsymmetrical tetradentate reduced Schiff base ligands , 2010 .

[15]  I. Ledoux-Rak,et al.  Synthesis, spectral, structural, second-order nonlinear optical properties and theoretical studies on new organometallic donor-acceptor substituted nickel(II) and copper(II) unsymmetrical Schiff-base complexes. , 2010, Inorganic chemistry.

[16]  Jichao Wang,et al.  Efficient electrolyte of N,N′-bis(salicylidene)ethylenediamine zinc(II) iodide in dye-sensitized solar cells , 2010 .

[17]  Sohini Sarkar,et al.  Supramolecular Dimers of Copper(II) Complexes Resulting from Designed Host–Guest Interactions , 2010 .

[18]  G. Erker,et al.  Salen Ligands Revisited: Synthesis and Application of a Planar Chiral “Ferro‐Salen” Ligand , 2010 .

[19]  D. Astruc,et al.  New, simple synthetic route to functional mono- and biferrocenes. , 2010, Inorganic chemistry.

[20]  V. Vetere,et al.  Synthesis, structure, and bonding of stable complexes of pentavalent uranyl. , 2010, Journal of the American Chemical Society.

[21]  T. Akitsu,et al.  Polarized spectroscopy of hybrid materials of chiral Schiff base cobalt(II), nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzenes in PMMA films , 2010 .

[22]  K. Murray,et al.  Spin crossover in iron(III) Schiff-base 1-D chain complexes. , 2010, Dalton transactions.

[23]  Hartmut Yersin,et al.  Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. , 2010, Chemistry.

[24]  J. Hui,et al.  Supramolecular assembly of carbohydrate-functionalized salphen-metal complexes. , 2009, Chemistry.

[25]  R. Abagyan,et al.  Stabilization of G-quadruplex DNA with platinum(II) Schiff base complexes: luminescent probe and down-regulation of c-myc oncogene expression. , 2009, Chemistry.

[26]  Shigehisa Akine,et al.  Cyclic and acyclic oligo(N2O2) ligands for cooperative multi-metal complexation. , 2009, Dalton transactions.

[27]  S. Mitra,et al.  Syntheses, characterisation, magnetism and photoluminescence of a homodinuclear Ln(III)-Schiff base family. , 2009, Dalton transactions.

[28]  L. Rusere,et al.  Synthesis and crystal structures of Ni(II), Cu(II) and μ-oxo-Fe(III) complexes of a salen type ligand: Mononuclear versus multinuclear complex formation , 2009 .

[29]  S. Mitra,et al.  An unprecedented CuII-Schiff base complex existing as two different trinuclear units with strong antiferromagnetic couplings , 2009 .

[30]  V. Mougel,et al.  Stable pentavalent uranyl species and selective assembly of a polymetallic mixed-valent uranyl complex by cation-cation interactions. , 2009, Angewandte Chemie.

[31]  A. Powell,et al.  Salen-based infinite coordination polymers of nickel and copper. , 2009, Inorganic chemistry.

[32]  S. Mandal,et al.  Apoptosis and anti-tumour activities of manganese(III)-salen and -salphen complexes. , 2009, Dalton transactions.

[33]  Birgit Weber Spin crossover complexes with N4O2 coordination sphere—The influence of covalent linkers on cooperative interactions , 2009 .

[34]  T. Storr,et al.  Detailed evaluation of the geometric and electronic structures of one-electron oxidized group 10 (Ni, Pd, and Pt) metal(II)-(disalicylidene)diamine complexes. , 2009, Inorganic chemistry.

[35]  Arjan W. Kleij,et al.  Zinc-centred salen complexes: versatile and accessible supramolecular building motifs. , 2009, Dalton transactions.

[36]  D. Astruc,et al.  A new, facile, and general synthesis of functional and heterodifunctional ferrocenes. , 2009, Organic letters.

[37]  S. Brooker,et al.  Ligands and polymetallic complexes derived from 1,4-diformyl-2,3-dihydroxybenzene and two close analogues , 2009 .

[38]  J. Hamon,et al.  Synthesis, characterization and X-ray crystal structure of an allyloxo functionalized nonsymmetric nickel coordination complex based on N2O2 chelating ferrocenyl ligand , 2009 .

[39]  Arjan W. Kleij,et al.  Nonsymmetrical Salen Ligands and Their Complexes: Synthesis and Applications , 2009 .

[40]  C. Philouze,et al.  One-electron oxidized nickel(II) complexes of bis and tetra(salicylidene) phenylenediamine Schiff bases: from monoradical to interacting Ni(III) ions. , 2009, Dalton transactions.

[41]  Birgit Weber,et al.  Structure and Magnetic Properties of Iron(II/III) Complexes with N2O22– Coordinating Schiff Base Like Ligands , 2009 .

[42]  Arjan W. Kleij,et al.  New templating strategies with salen scaffolds (Salen=N,N'-bis(salicylidene)ethylenediamine dianion). , 2008, Chemistry.

[43]  G. Erker,et al.  Mastering the third dimension of salicylaldimine-type ligand systems: development of a convenient route to bis("ferrocene-saliminato")zirconium chemistry. , 2008, Chemistry.

[44]  T. Okubo,et al.  The effect of molecular packing on the occurrence of spin crossover phenomena in one-dimensional Fe(II)-bis-Schiff base complexes , 2008 .

[45]  J. Hamon,et al.  Synthesis, characterization and crystal structure of the tridentate metalloligand formed from mono-condensation of ferrocenoylacetone and 1,2-phenylenediamine , 2008 .

[46]  A. Gorden,et al.  Hydroxy- and alkoxy-bridged dinuclear uranyl-Schiff base complexes: hydrolysis, transamination and extraction studies. , 2008, Dalton transactions.

[47]  J. Maldonado,et al.  Synthesis, crystal structure and non-linear optical properties of boronates derivatives of salicylideniminophenols , 2008 .

[48]  M. Drew,et al.  Methylene Spacer-Regulated Structural Variation in Cobalt(II/III) Complexes with Bridging Acetate and Salen- or Salpn-Type Schiff-Base Ligands , 2008 .

[49]  Tony D. Keene,et al.  Coordination chemistry of a pi-extended, rigid and redox-active tetrathiafulvalene-fused Schiff-base ligand. , 2008, Inorganic chemistry.

[50]  M. H. Lee,et al.  Aluminium-salen luminophores as new hole-blocking materials for phosphorescent OLEDs. , 2008, Dalton transactions.

[51]  Arjan W. Kleij,et al.  Material applications for salen frameworks. , 2008, Angewandte Chemie.

[52]  F. Marchetti,et al.  Coordination and Supramolecular Chemistry of New Bis‐bidentate Schiff‐Base Ligands , 2008 .

[53]  J. Hamon,et al.  Organometallic–Inorganic Conjugated Unsymmetrical Schiff-Base Hybrids. Synthesis, Characterization, Electrochemistry and X-ray Crystal Structures of Functionalized Trinuclear Iron–Nickel–Ruthenium Dipolar Chromophores , 2008 .

[54]  I. Goldberg,et al.  Titanium and zirconium complexes of robust salophan ligands. Coordination chemistry and olefin polymerization catalysis. , 2008, Journal of the American Chemical Society.

[55]  J. Hamon,et al.  Trinuclear π-conjugated chromophores formed by a neutral ferrocenyl group and a cationic mixed ruthenium sandwich linked through an unsymmetrical Schiff-base complex spacer , 2007 .

[56]  Kazuhiro Matsumoto,et al.  Asymmetric catalysis of metal complexes with non-planar ONNO ligands: salen, salalen and salan. , 2007, Chemical communications.

[57]  D. Darensbourg,et al.  Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. , 2007, Chemical reviews.

[58]  M. MacLachlan,et al.  Schiff Base Complexes in Macromolecules , 2007 .

[59]  E. Baerends,et al.  A Square‐Planar Nickel(II) Monoradical Complex with a Bis(salicylidene)diamine Ligand , 2007 .

[60]  S. Quici,et al.  Structural, spectral, electric-field-induced second harmonic, and theoretical study of Ni(II), Cu(II), Zn(II), and VO(II) complexes with [N2O2] unsymmetrical schiff bases of S-methylisothiosemicarbazide derivatives. , 2007, Inorganic chemistry.

[61]  A. Forni,et al.  Copper(II) complexes of salen analogues with two differently substituted (push-pull) salicylaldehyde moieties. A study on the modulation of electronic asymmetry and nonlinear optical properties. , 2006, Inorganic chemistry.

[62]  T. Carell,et al.  Metal-salen-base-pair complexes inside DNA: complexation overrides sequence information. , 2006, Chemistry.

[63]  H. García,et al.  Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. , 2006, Chemical reviews.

[64]  R. Kadam,et al.  Synthesis and spectroscopic studies on copper(II) binuclear complexes of 1-phenylamidino-O-alkylurea (alkyl = n-propyl, n- and iso-butyl) with 1,3-diaminopropane or ethylenediamine. , 2006, Inorganic chemistry.

[65]  R. Scopelliti,et al.  Atom Transfer Radical Additions with the Cationic Half‐Sandwich Complex [Cp*Ru(PPh3)2(CH3CN)]OTf , 2005 .

[66]  R. Kadam,et al.  Synthesis, EPR and biological activities of bis(1-n-butylamidino-O-alkylurea)copper(II)chloride complexes: EPR evidence for binuclear complexes in frozen DMF solution , 2005 .

[67]  E. McGarrigle,et al.  Chromium- and manganese-salen promoted epoxidation of alkenes. , 2005, Chemical reviews.

[68]  T. Sheppard,et al.  Site-specific oxidative cleavage of DNA by metallosalen-DNA conjugates. , 2004, Chemical communications.

[69]  P. A. Vigato,et al.  The challenge of cyclic and acyclic schiff bases and related derivatives , 2004 .

[70]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[71]  T. Katsuki,et al.  Unique asymmetric catalysis of cis-beta metal complexes of salen and its related Schiff-base ligands. , 2004, Chemical Society reviews.

[72]  M. D. Mbaye,et al.  Ruthenium‐Catalyzed O‐Allylation of Phenols from Allylic Chlorides via Cationic [Cp*(η3‐allyl)(MeCN)RuX][PF6] Complexes , 2004 .

[73]  H. Adams,et al.  Solid-supported cross-coupling catalysts derived from homogeneous nickel and palladium coordination complexes. , 2004, Dalton transactions.

[74]  J. Koehne,et al.  The X-ray structures of a series of copper(II) complexes with tetradentate Schiff base ligands derived from salicylaldehyde and polymethylenediamines of varying chain length , 2003 .

[75]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[76]  E. Spodine,et al.  Electrochemical studies of copper(II) complexes with Schiff-base ligands , 2002 .

[77]  S. Bella Second-order nonlinear optical properties of transition metal complexes , 2001 .

[78]  P. Lacroix Second‐Order Optical Nonlinearities in Coordination Chemistry: The Case of Bis(salicylaldiminato)metal Schiff Base Complexes , 2001 .

[79]  I. Fragalà,et al.  Synthesis and second-order nonlinear optical properties of bis(salicylaldiminato)M(II) metalloorganic materials , 2000 .

[80]  E. Jacobsen,et al.  Asymmetric catalysis of epoxide ring-opening reactions. , 2000, Accounts of chemical research.

[81]  A. Aukauloo,et al.  Synthesis, Crystal Structure, and Second-Order Nonlinear Optical Properties of a New Bis(salicylaldiminato)nickel(II) Metal Complex , 1999 .

[82]  W. Schenk,et al.  Convenient Synthesis of [(η5-C5Me5)Ru(NCMe)3]PF6 and the Phosphine Derivatives [(η5-C5Me5)Ru(PR3)2(NCMe)]PF6 , 1999 .

[83]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[84]  A. Cian,et al.  Synthesis of New Binucleating Cylindrical Macrotricyclic Ligands Where Two Cyclam Rings Are in a Face-to-Face Conformation. Characterization of Their Dicopper(II) and Dinickel(II) Complexes , 1998 .

[85]  D. Peters,et al.  Electrochemical reduction of copper(II) salen at carbon cathodes in dimethylformamide , 1998 .

[86]  K. Kirchner,et al.  The substitution chemistry of RuCp* (temeda)Cl , 1997 .

[87]  J. Lo,et al.  [N,N'-bis(salicylidene)-1,4-diiminobutane]copper(II) , 1997 .

[88]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[89]  J. Zuo,et al.  Syntheses and properties of complexes of CuII, NiII and ZnII with N,N′-trimethylene bis(salicylaldehyde imine). Crystal structure of Cu(Sal2tn) , 1996 .

[90]  S. Leppard,et al.  Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts. , 1996, Inorganic chemistry.

[91]  P. A. Vigato,et al.  From mononuclear to polynuclear macrocyclic or macroacyclic complexes , 1995 .

[92]  M. Bhadbhade,et al.  Effects on molecular association, chelate conformation, and reactivity toward substitution in copper Cu(5-X-salen) complexes, salen2- = N,N'-ethylenebis(salicylidenaminato), X = H, CH3O, and Cl: synthesis, x-ray structures, and EPR investigations. [Erratum to document cited in CA119(26):285036b] , 1993 .

[93]  J. Costamagna,et al.  Coordination compounds of copper, nickel and iron with Schiff bases derived from hydroxynaphthaldehydes and salicylaldehydes , 1992 .

[94]  B. Varghese,et al.  Crystal and molecular structure of dimeric bis[N,N-di-n-propyldithiocarbamato]zinc(II) and the study of exchange-coupled copper(II)-copper(II) pairs in its lattice , 1990 .

[95]  A. J. Arduengo,et al.  Tetrakis(trifluoromethyl)cyclopentadienyl ligands for transition metals , 1989 .

[96]  M. Ward,et al.  Molecular engineering of solid-state materials: organometallic building blocks , 1989 .

[97]  H. Adams,et al.  The syntheses, properties and crystal and molecular structures of the copper(II) and nickel(II) complexes of the non-symmetric schiff bases, derived from 1,2-diaminoethane, pentane-2,4-dione and 2-pyrollecarboxaldehyde , 1985 .

[98]  S. Eaton,et al.  Use of the ESR half-field transition to determine the interspin distance and the orientation of the interspin vector in systems with two unpaired electrons , 1983 .

[99]  J. Dunitz,et al.  The Structure of Triclinic Ferrocene at 101, 123 and 148 K , 1979 .

[100]  L. Wilson,et al.  Magnetic exchange interactions in transition-metal dimers. 14. Binuclear copper(II) Schiff base compounds of salicylaldehyde with aromatic polyamines , 1978 .

[101]  C. Marvel,et al.  Quadridentate and Sexadentate Chelates. Some Preliminary Studies in their Preparation and Thermal Stability1 , 1956 .

[102]  K. Bowers,et al.  Anomalous paramagnetism of copper acetate , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[103]  F. Tessore,et al.  Coordination and Organometallic Complexes as Second-Order Nonlinear Optical Molecular Materials , 2010 .

[104]  Soon-Yong Jeong,et al.  Synthesis of a sulfonato-salen-nickel(II) complex immobilized in LDH for tetralin oxidation , 2010 .

[105]  T. Carell,et al.  Controlled stacking of 10 transition-metal ions inside a DNA duplex. , 2007, Angewandte Chemie.

[106]  Y. Ustynyuk,et al.  Metal-free methods in the synthesis of macrocyclic schiff bases. , 2007, Chemical reviews.

[107]  D. Sherrington,et al.  Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis , 1999 .

[108]  P. Fagan,et al.  Synthesis of (η5-Pentamethylcyclopentadienyl)ruthenium π-Complexes of Heterocycles by Nucleophilic Substitution† , 1996 .

[109]  Olga Kennard,et al.  Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds , 1987 .