In Search of Short Gamma-Ray Burst Optical Counterparts with the Zwicky Transient Facility

The Fermi Gamma-ray Burst Monitor (GBM) triggers on-board in response to ∼40 short gamma-ray bursts (SGRBs) per year; however, their large localization regions have made the search for optical counterparts a challenging endeavour. We have developed and executed an extensive program with the wide field of view of the Zwicky Transient Facility (ZTF) camera, mounted on the Palomar 48 inch Oschin telescope (P48), to perform target-of-opportunity (ToO) observations on 10 Fermi-GBM SGRBs during 2018 and 2020–2021. Bridging the large sky areas with small field-of-view optical telescopes in order to track the evolution of potential candidates, we look for the elusive SGRB afterglows and kilonovae (KNe) associated with these high-energy events. No counterpart has yet been found, even though more than 10 ground-based telescopes, part of the Global Relay of Observatories Watching Transients Happen (GROWTH) network, have taken part in these efforts. The candidate selection procedure and the follow-up strategy have shown that ZTF is an efficient instrument for searching for poorly localized SGRBs, retrieving a reasonable number of candidates to follow up and showing promising capabilities as the community approaches the multi-messenger era. Based on the median limiting magnitude of ZTF, our searches would have been able to retrieve a GW170817-like event up to ∼200 Mpc and SGRB afterglows to z = 0.16 or 0.4, depending on the assumed underlying energy model. Future ToOs will expand the horizon to z = 0.2 and 0.7, respectively.

[1]  R. Kotak,et al.  Searching for Fermi GRB optical counterparts with the prototype Gravitational-wave Optical Transient Observer (GOTO) , 2021, Monthly Notices of the Royal Astronomical Society.

[2]  L. Amati To be short or long is not the question , 2021, Nature Astronomy.

[3]  A. Mahabal,et al.  Author Correction: Discovery and confirmation of the shortest gamma-ray burst from a collapsar , 2021, Nature Astronomy.

[4]  A. Castro-Tirado,et al.  A peculiarly short-duration gamma-ray burst from massive star core collapse , 2021, Nature Astronomy.

[5]  A. Mahabal,et al.  Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate , 2021, The Astrophysical Journal.

[6]  K. Mooley,et al.  An early peak in the radio light curve of short-duration gamma-ray burst 200826A , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  G. Ashton,et al.  Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin , 2020, Proceedings of the International Astronomical Union.

[8]  A. Levan,et al.  Probing Kilonova Ejecta Properties Using a Catalog of Short Gamma-Ray Burst Observations , 2021, 2101.03175.

[9]  A. Mahabal,et al.  A tidal disruption event coincident with a high-energy neutrino , 2020, Nature Astronomy.

[10]  M. Coughlin,et al.  Multimessenger constraints on the neutron-star equation of state and the Hubble constant , 2020, Science.

[11]  Chris L. Fryer,et al.  A tale of two mergers: constraints on kilonova detection in two short GRBs at z$\sim$0.5 , 2020, 2012.00026.

[12]  M. Graham,et al.  Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j , 2020, Nature Astronomy.

[13]  Chris L. Fryer,et al.  The Broadband Counterpart of the Short GRB 200522A at z = 0.5536: A Luminous Kilonova or a Collimated Outflow with a Reverse Shock? , 2020, 2008.08593.

[14]  A. Mahabal,et al.  Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers , 2020, The Astrophysical Journal.

[15]  Adam A. Miller,et al.  Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3 , 2020, The Astrophysical Journal.

[16]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[17]  L. Singer,et al.  Dynamic scheduling: target of opportunity observations of gravitational wave events , 2020, 2003.09718.

[18]  J. Ruan,et al.  A Deep CFHT Optical Search for a Counterpart to the Possible Neutron Star–Black Hole Merger GW190814 , 2020, The Astrophysical Journal.

[19]  P. N. Bhat,et al.  The Fourth Fermi-GBM Gamma-Ray Burst Catalog: A Decade of Data , 2020, The Astrophysical Journal.

[20]  A. Lien,et al.  Short gamma-ray bursts within 200 Mpc , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  D. A. García-Hernández,et al.  The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2019, The Astrophysical Journal Supplement Series.

[22]  J. Newman,et al.  GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star–Black Hole Merger , 2019, The Astrophysical Journal.

[23]  A. Mahabal,et al.  Palomar Gattini-IR: Survey Overview, Data Processing System, On-sky Performance and First Results , 2019, Publications of the Astronomical Society of the Pacific.

[24]  E. Troja,et al.  Gamma-Ray Burst Afterglows in the Multimessenger Era: Numerical Models and Closure Relations , 2019, The Astrophysical Journal.

[25]  D. Kocevski,et al.  Evaluation of Automated Fermi GBM Localizations of Gamma-Ray Bursts , 2019, The Astrophysical Journal.

[26]  N. Masetti,et al.  A comparison between short GRB afterglows and kilonova AT2017gfo: shedding light on kilonovae properties , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  Adam A. Miller,et al.  ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample , 2019, The Astrophysical Journal.

[28]  N. Christensen,et al.  Optimizing multitelescope observations of gravitational-wave counterparts , 2019, Monthly Notices of the Royal Astronomical Society.

[29]  Eugene Serabyn,et al.  GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR , 2019, The Astrophysical Journal.

[30]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  P. Brady,et al.  Toward Rate Estimation for Transient Surveys. I. Assessing Transient Detectability and Volume Sensitivity for iPTF , 2019, The Astrophysical Journal.

[32]  M. Bulla,et al.  possis: predicting spectra, light curves, and polarization for multidimensional models of supernovae and kilonovae , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  A. Mahabal,et al.  GROWTH on S190510g: DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate , 2019, The Astrophysical Journal.

[34]  M. Graham,et al.  GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam , 2019, The Astrophysical Journal.

[35]  P. Cowperthwaite,et al.  Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR , 2019, The Astrophysical Journal.

[36]  A. Lien,et al.  The afterglow and kilonova of the short GRB 160821B , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  Richard Walters,et al.  The Zwicky Transient Facility: Surveys and Scheduler , 2019, Publications of the Astronomical Society of the Pacific.

[38]  A. Mahabal,et al.  Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves , 2019, Astronomy & Astrophysics.

[39]  Daniel Muthukrishna,et al.  DASH: Deep Learning for the Automated Spectral Classification of Supernovae and Their Hosts , 2019, The Astrophysical Journal.

[40]  C. Fremling,et al.  Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm , 2019, Astronomy & Astrophysics.

[41]  Marek Kowalski,et al.  simsurvey: estimating transient discovery rates for the Zwicky transient facility , 2019, Journal of Cosmology and Astroparticle Physics.

[42]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[43]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[44]  Eric Burns,et al.  2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[45]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[46]  M. Coughlin,et al.  The Kitt Peak Electron Multiplying CCD demonstrator , 2019, Monthly Notices of the Royal Astronomical Society.

[47]  Chris L. Fryer,et al.  A luminosity distribution for kilonovae based on short gamma-ray burst afterglows , 2018, Monthly Notices of the Royal Astronomical Society.

[48]  Mansi M. Kasliwal,et al.  Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields , 2017, The Astrophysical Journal.

[49]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[50]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[51]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.

[52]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[53]  M. Chan,et al.  Optimizing searches for electromagnetic counterparts of gravitational wave triggers , 2018, 1803.02255.

[54]  Caltech,et al.  A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817 , 2017, Nature.

[55]  K. Wiersema,et al.  The Diversity of Kilonova Emission in Short Gamma-Ray Bursts , 2017, The Astrophysical Journal.

[56]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[57]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[58]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[59]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[60]  M. Serra-Ricart,et al.  MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817 , 2017, 1710.05461.

[61]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[62]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[63]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[64]  Chris L. Fryer,et al.  The Origin of r-process Elements in the Milky Way , 2017, 1710.05875.

[65]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[66]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[67]  Mariusz Gromadzki,et al.  The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days , 2017, 1710.05853.

[68]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[69]  Chris L. Fryer,et al.  Swift and NuSTAR observations of GW170817: Detection of a blue kilonova , 2017, Science.

[70]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[71]  J. Prochaska,et al.  Electromagnetic evidence that SSS17a is the result of a binary neutron star merger , 2017, Science.

[72]  B. J. Shappee,et al.  Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger , 2017, Science.

[73]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[74]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[75]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[76]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[77]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[78]  Matteo Cantiello,et al.  Off-axis Prompt X-Ray Transients from the Cocoon of Short Gamma-Ray Bursts , 2017, 1709.01468.

[79]  A. J. van der Horst,et al.  THE AFTERGLOW AND EARLY-TYPE HOST GALAXY OF THE SHORT GRB 150101B AT z = 0.1343 , 2016, 1608.08626.

[80]  P. E. Nugent,et al.  PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.

[81]  Z. Cano,et al.  The Observer's Guide to the Gamma-Ray Burst-Supernova Connection , 2016, 1604.03549.

[82]  Eric C. Bellm,et al.  pyraf-dbsp: Reduction pipeline for the Palomar Double Beam Spectrograph , 2016 .

[83]  P. D'Avanzo,et al.  Short gamma-ray bursts: A review , 2015 .

[84]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[85]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[86]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[87]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[88]  R. Tsutsui,et al.  Possible existence of the Ep-Lp and Ep-Eiso correlations for short gamma-ray bursts with a factor 5–100 dimmer than those for long gamma-ray bursts , 2012, 1208.0429.

[89]  B. Metzger,et al.  The Proto-Magnetar Model for Gamma-Ray Bursts , 2010, 1012.0001.

[90]  John L. Tonry,et al.  An Early Warning System for Asteroid Impact , 2010, 1011.1028.

[91]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[92]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[93]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[94]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[95]  Zhibin Zhang,et al.  An analysis of the durations of Swift gamma-ray bursts , 2007, 0708.4049.

[96]  A. Szalay,et al.  The Calibration and Data Products of the Galaxy Evolution Explorer , 2007, 0706.0755.

[97]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[98]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[99]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[100]  N. Gehrels,et al.  Testing the Standard Fireball Model of Gamma-Ray Bursts Using Late X-Ray Afterglows Measured by Swift , 2006, astro-ph/0612031.

[101]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[102]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[103]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[104]  V. Lipunov,et al.  The Master Mobile Astronomical System. Optical Observations of Gamma-Ray Bursts , 2005 .

[105]  Edward W. Dunham,et al.  Optical design of the Discovery Channel Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[106]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[107]  J. Granot,et al.  The Evolution of a Structured Relativistic Jet and Gamma-Ray Burst Afterglow Light Curves , 2003, astro-ph/0303174.

[108]  S. Djorgovski,et al.  The unusual afterglow of GRB 980326: evidence for the gamma-ray burst/supernova connection , 1999, astro-ph/9905301.

[109]  Bohdan Paczy'nski,et al.  Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.

[110]  P. S. Astronomy,et al.  Spectral Features from Ultrarelativistic Ions in Gamma-Ray Bursts? , 1998, astro-ph/9804119.

[111]  S. Djorgovski,et al.  Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.

[112]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[113]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[114]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[115]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[116]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[117]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[118]  R. Klebesadel,et al.  Observations of Gamma-Ray Bursts of Cosmic Origin , 1973 .