Interneuron cell types are fit to function

Understanding brain circuits begins with an appreciation of their component parts — the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function.

[1]  J. Hyvärinen,et al.  Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. , 1969, Journal of neurophysiology.

[2]  C. Cepko,et al.  Clonally related cortical cells show several migration patterns. , 1988, Science.

[3]  J. Sanes,et al.  Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[5]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[6]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[7]  S. Hestrin,et al.  Morphology and Physiology of Cortical Neurons in Layer I , 1996, The Journal of Neuroscience.

[8]  C. Cepko,et al.  Cell fate determination in the vertebrate retina. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  L. Acsády,et al.  Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus , 1996, Neuroscience.

[10]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[11]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[12]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[13]  L. Acsády,et al.  Target Selectivity and Neurochemical Characteristics of VIP‐immunoreactive Interneurons in the Rat Dentate Gyrus , 1996, The European journal of neuroscience.

[14]  Leyuan Shi,et al.  Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. , 1997, Science.

[15]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[16]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[17]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[18]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[19]  O. Marín,et al.  Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. , 1999, Development.

[20]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[21]  S. Anderson,et al.  Origin and Molecular Specification of Striatal Interneurons , 2000, The Journal of Neuroscience.

[22]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[23]  G. Fishell,et al.  In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. , 2001, Development.

[24]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[25]  G. Tamás,et al.  β and γ Frequency Synchronization by Dendritic GABAergic Synapses and Gap Junctions in a Network of Cortical Interneurons , 2001, The Journal of Neuroscience.

[26]  Hans R. Gelderblom,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001 .

[27]  G. Fishell,et al.  Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain , 2001, Nature Neuroscience.

[28]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[29]  M. Ekker,et al.  Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. , 2002, Development.

[30]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[31]  C. Schuurmans,et al.  Molecular mechanisms underlying cell fate specification in the developing telencephalon , 2002, Current Opinion in Neurobiology.

[32]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[33]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[34]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[35]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[36]  Miles A Whittington,et al.  Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro , 2003, Trends in Neurosciences.

[37]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[38]  Paul H. E. Tiesinga,et al.  Rapid Temporal Modulation of Synchrony by Competition in Cortical Interneuron Networks , 2004, Neural Computation.

[39]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[40]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[42]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[43]  M. Calcagnotto,et al.  Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy , 2005, Nature Neuroscience.

[44]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[45]  T. Brody,et al.  Regulation of temporal identities during Drosophila neuroblast lineage development. , 2005, Current opinion in cell biology.

[46]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[47]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[48]  Oliver Hobert,et al.  Specification of the nervous system. , 2005, WormBook : the online review of C. elegans biology.

[49]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[50]  D. O'Leary,et al.  Cortical ventricular zone progenitors and their progeny maintain spatial relationships and radial patterning during preplate development indicating an early protomap. , 2006, Cerebral cortex.

[51]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[52]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[53]  J. Rubenstein,et al.  Inactivation of Arx, the Murine Ortholog of the X-Linked Lissencephaly with Ambiguous Genitalia Gene, Leads to Severe Disorganization of the Ventral Telencephalon with Impaired Neuronal Migration and Differentiation , 2007, The Journal of Neuroscience.

[54]  M. Poo,et al.  Excitatory GABA Action Is Essential for Morphological Maturation of Cortical Neurons In Vivo , 2007, The Journal of Neuroscience.

[55]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[56]  I. Cobos,et al.  Dlx Transcription Factors Promote Migration through Repression of Axon and Dendrite Growth , 2007, Neuron.

[57]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[58]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[59]  K. Deisseroth,et al.  optical technologies for probing neural signals and systems , 2007 .

[60]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[61]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[62]  G. Miyoshi,et al.  The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes , 2008, Neuron.

[63]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[64]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[65]  S. Anderson,et al.  NKX2.1 specifies cortical interneuron fate by activating Lhx6 , 2008, Development.

[66]  F. Guillemot,et al.  Ascl1 is a required downstream effector of Gsx gene function in the embryonic mouse telencephalon , 2009, Neural Development.

[67]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[68]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[69]  Tomoki Fukai,et al.  Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements , 2009, Nature Neuroscience.

[70]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[71]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[72]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[73]  I. Cobos,et al.  Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. , 2009, Cerebral cortex.

[74]  Dante S. Bortone,et al.  KCC2 Expression Promotes the Termination of Cortical Interneuron Migration in a Voltage-Sensitive Calcium-Dependent Manner , 2009, Neuron.

[75]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[76]  A. Kriegstein,et al.  Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. , 2010, Cell stem cell.

[77]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[78]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[79]  J. Magee,et al.  Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons , 2010, Nature Neuroscience.

[80]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[81]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[82]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[83]  Michael P Stryker,et al.  Cortical Plasticity Induced by Inhibitory Neuron Transplantation , 2010, Science.

[84]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[85]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[86]  Multiplying two numbers together in your head is a difficult task if you did not learn multiplication tables as a child. On the face of it, this is somewhat surprising given the remarkable power of the brain to perform , 2010 .

[87]  Theofanis Karayannis,et al.  Neuronal activity is required for the development of specific cortical interneuron subtypes , 2011, Nature.

[88]  M. Greenberg,et al.  Neuronal activity-regulated gene transcription in synapse development and cognitive function. , 2011, Cold Spring Harbor perspectives in biology.

[89]  Kevin T. Beier,et al.  Conditional expression of the TVA receptor allows clonal analysis of descendents from Cre-expressing progenitor cells. , 2011, Developmental biology.

[90]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[91]  S. Anderson,et al.  Clonal Production and Organization of Inhibitory Interneurons in the Neocortex , 2011, Science.

[92]  John M. Pearson,et al.  Neuronal basis of sequential foraging decisions in a patchy environment , 2011, Nature Neuroscience.

[93]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[94]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[95]  N. Dehorter,et al.  A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area , 2011, The Journal of Neuroscience.

[96]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[97]  J. Rubenstein,et al.  Forebrain GABAergic Neuron Precursors Integrate into Adult Spinal Cord and Reduce Injury-Induced Neuropathic Pain , 2012, Neuron.

[98]  A. West,et al.  Members of the Myocyte Enhancer Factor 2 Transcription Factor Family Differentially Regulate Bdnf Transcription in Response to Neuronal Depolarization , 2012, The Journal of Neuroscience.

[99]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[100]  M. Denaxa,et al.  Maturation-Promoting Activity of SATB1 in MGE-Derived Cortical Interneurons , 2012, Cell reports.

[101]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[102]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[103]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[104]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[105]  Bernardo Rudy,et al.  Satb1 Is an Activity-Modulated Transcription Factor Required for the Terminal Differentiation and Connectivity of Medial Ganglionic Eminence-Derived Cortical Interneurons , 2012, The Journal of Neuroscience.

[106]  Michael Lagler,et al.  Behavior-dependent specialization of identified hippocampal interneurons , 2012, Nature Neuroscience.

[107]  S. Anderson,et al.  Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. , 2012, Cerebral cortex.

[108]  P. Golshani,et al.  Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice , 2012, Proceedings of the National Academy of Sciences.

[109]  M. Carandini From circuits to behavior: a bridge too far? , 2012, Nature Neuroscience.

[110]  I. Soltesz,et al.  Basket cell dichotomy in microcircuit function , 2012, The Journal of physiology.

[111]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[112]  A. Visel,et al.  Dlx1&2-Dependent Expression of Zfhx1b (Sip1, Zeb2) Regulates the Fate Switch between Cortical and Striatal Interneurons , 2013, Neuron.

[113]  Yang Dan,et al.  Cell-type-specific modulation of neocortical activity by basal forebrain input , 2013, Front. Syst. Neurosci..

[114]  Miguel Maravall,et al.  Lineage-specific laminar organization of cortical GABAergic interneurons , 2013, Nature Neuroscience.

[115]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[116]  M. Carandini,et al.  Erratum: Inhibition dominates sensory responses in awake cortex (Nature (2013) 493 (97-100) DOI:10.1038/nature11655) , 2013 .

[117]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[118]  G. Fishell,et al.  Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1 , 2013, Neuron.

[119]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[120]  Ian Nauhaus,et al.  Contrast Dependence and Differential Contributions from Somatostatin- and Parvalbumin-Expressing Neurons to Spatial Integration in Mouse V1 , 2013, The Journal of Neuroscience.

[121]  B. Hangya,et al.  Distinct behavioural and network correlates of two interneuron types in prefrontal cortex , 2013, Nature.

[122]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[123]  C. McBain,et al.  Dual embryonic origins of functionally distinct hippocampal O-LM cells revealed by differential 5-HT3AR expression , 2013, Nature Neuroscience.

[124]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[125]  J. Rubenstein,et al.  Loss of Gsx1 and Gsx2 Function Rescues Distinct Phenotypes in Dlx1/2 Mutants , 2012, The Journal of comparative neurology.

[126]  M. Carandini,et al.  Normalization as a canonical neural computation , 2013, Nature Reviews Neuroscience.

[127]  S. Anderson,et al.  NKX 2 . 1 specifies cortical interneuron fate by activating Lhx 6 , 2022 .